Respuesta :
Answer:
√3 * Gm²/d²
Explanation:
m1 = m, m2= m, distance = d. hence:
F = Gm²/d²
Let the origin be A, the point x = d be B and the point above the first two is C.
The net force acting on the third mass (point C) [tex]F_{net}[/tex] = [tex]F_A+F_B[/tex]
Let j represent the vertical component and i the horizontal component. Hence:
[tex]F_B=-F_j\\\\F_A=-F(icos\frac{\pi}{6}+jsin\frac{\pi}{6} )=-F(i\frac{\sqrt{3} }{2}+j\frac{1}{2} )\\\\F_{net} =F_A+F_B\\\\F_{net} =-F_j+{-F(i\frac{\sqrt{3} }{2}+j\frac{1}{2} )}\\\\F_{net} =-\frac{F}{2} \sqrt{3}(i+j\sqrt{3} )\\\\The\ magnitude\ of\ the\ net\ force\ is:\\\\|F_{net}|=\frac{F}{2}\sqrt{3}(\sqrt{1^2+\sqrt{3}^2 })=\frac{F}{2} \sqrt{3}(\sqrt{4})\\\\|F_{net}|=\frac{F}{2} \sqrt{3}*2=F*\sqrt{3}\\\\|F_{net}|=\sqrt{3}*\frac{Gm^2}{d^2}[/tex]
Answer:
- The net gravitational force on the third mass = [tex]3^{0.5} * \frac{Gm^2}{d^2}[/tex]
Explanation:
For equilateral triangle,
[tex]\theta = 30^o[/tex]
Force between masses,
[tex]F_1 = \frac{G*m*m}{d^2}\\\\F_! = \frac{Gm^2}{d^2}[/tex]
Therefore,
[tex]F_net = 2F_1cos\theta\\\\F_net = 2 * \frac{Gm^2}{d^2} * cos30\\\\F_net = 3^{0.5} * \frac{Gm^2}{d^2}[/tex]
For more information on this visit
https://brainly.com/question/23379286