Determine the theoretical yield of HCl if 60.0 g of BC13 and 37.5 g of H20 are reacted according to the following balanced reaction. A possibly useful molar mass is BC13 117.16 g/mol. BC13(g)+3 H20(1) -- H3BO3(s)+3 HC1(g)

Respuesta :

Answer : The theoretical yield of HCl is, 56.1735 grams

Explanation : Given,

Mass of [tex]BCl_3[/tex] = 60 g

Mass of [tex]H_2O[/tex] = 37.5 g

Molar mass of [tex]BCl_3[/tex] = 117 g/mole

Molar mass of [tex]H_2O[/tex] = 18 g/mole

Molar mass of [tex]HCl[/tex] = 36.5 g/mole

First we have to calculate the moles of [tex]BCl_3[/tex] and [tex]H_2O[/tex].

[tex]\text{Moles of }BCl_3=\frac{\text{Mass of }BCl_3}{\text{Molar mass of }BCl_3}=\frac{60g}{117g/mole}=0.513moles[/tex]

[tex]\text{Moles of }H_2O=\frac{\text{Mass of }H_2O}{\text{Molar mass of }H_2O}=\frac{37.5g}{18g/mole}=2.083moles[/tex]

Now we have to calculate the limiting and excess reagent.

The balanced chemical reaction is,

[tex]BCl_3(g)+3H_2O(l)\rightarrow H_3BO_3(s)+3HCl(g)[/tex]

From the balanced reaction we conclude that

As, 1 mole of [tex]BCl_3[/tex] react with 3 mole of [tex]H_2O[/tex]

So, 0.513 moles of [tex]BCl_3[/tex] react with [tex]3\times 0.513=1.539[/tex] moles of [tex]H_2O[/tex]

From this we conclude that, [tex]H_2O[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]BCl_3[/tex] is a limiting reagent and it limits the formation of product.

Now we have to calculate the moles of [tex]HCl[/tex].

As, 1 mole of [tex]BCl_3[/tex] react to give 3 moles of [tex]HCl[/tex]

So, 0.513 moles of [tex]BCl_3[/tex] react to give [tex]3\times 0.513=1.539[/tex] moles of [tex]HCl[/tex]

Now we have to calculate the mass of [tex]HCl[/tex].

[tex]\text{Mass of }HCl=\text{Moles of }HCl\times \text{Molar mass of }HCl[/tex]

[tex]\text{Mass of }HCl=(1.539mole)\times (36.5g/mole)=56.1735g[/tex]

Therefore, the theoretical yield of HCl is, 56.1735 grams

ACCESS MORE