Respuesta :
Answer:
Approximately 352 liters of water vapor will be produced.
Assumption: the water vapor here behaves like an ideal gas.
Explanation:
Relative atomic mass data from a modern periodic table:
- Carbon: 12.011;
- Hydrogen: 1.008.
Burning methane [tex]\rm CH_4[/tex] in excess oxygen will produce carbon dioxide and water. The balanced equation will be
[tex]\rm CH_4\; (g) + 2\; O_2\;(g) \to CO_2\;(g) + 2\; H_2O\;(g)[/tex].
Hint: start by assign "1" to methane while balancing this equation.
How many moles of molecules in 108 gram of methane?
Molar mass of methane:
[tex]M(\rm CH_4) = 12.011 + 4\time 1.008 =16.043\;g\cdot mol^{-1}[/tex].
[tex]\displaystyle n(\rm CH_4) = \frac{m}{M} = \frac{108}{16.043} = 6.73191\;mol[/tex].
How many moles of water molecules will be produced?
Consider the ratio between the coefficient in front of water and that in front of methane in the equation:
[tex]\displaystyle \frac{n(\mathrm{H_2O})}{n(\mathrm{CH_4})} = 2[/tex].
[tex]\displaystyle n(\mathrm{H_2O}) = n(\mathrm{CH_4})\cdot \frac{n(\mathrm{H_2O})}{n(\mathrm{CH_4})} = \rm 2\times 6.73191\;mol = 13.4638\;mol[/tex].
Assume that water vapor here behaves like an ideal gas.
Ideal gas constant in liters and [tex]\rm atm[/tex]:
[tex]R \rm \approx 0.0820573\;L\cdot atm \cdot K^{-1}\cdot mol^{-1}[/tex]. (NIST.)
Make sure that the temperature here is in degrees Kelvins.
[tex]\displaystyle \begin{aligned}V &= \frac{n\cdot R\cdot T}{P} \\ &= \rm \frac{13.4638\;mol\times 0.0820573\;L\cdot atm \cdot K^{-1}\cdot mol^{-1}\times 312\; K}{0.98\; atm}\\ &\rm \approx 352\; L\end{aligned}[/tex].