Respuesta :
Answer: [tex]6.268(10)^{-16}J[/tex]
The kinetic energy of an electron [tex]K_{e}[/tex] is given by the following equation:
[tex]K_{e}=\frac{(p_{e})^{2} }{2m_{e}}[/tex] (1)
Where:
[tex]K_{e}=15eV=2.403^{-18}J=2.403^{-18}\frac{kgm^{2}}{s^{2}}[/tex]
[tex]p_{e}[/tex] is the momentum of the electron
[tex]m_{e}=9.11(10)^{-31}kg[/tex] is the mass of the electron
From (1) we can find [tex]p_{e}[/tex]:
[tex]p_{e}=\sqrt{2K_{e}m_{e}}[/tex] (2)
[tex]p_{e}=\sqrt{2(2.403^{-18}J)(9.11(10)^{-31}kg)}[/tex]
[tex]p_{e}=2.091(10)^{-24}\frac{kgm}{s}[/tex] (3)
Now, in order to find the wavelength of the electron [tex]\lambda_{e}[/tex] with this given kinetic energy (hence momentum), we will use the De Broglie wavelength equation:
[tex]\lambda_{e}=\frac{h}{p_{e}}[/tex] (4)
Where:
[tex]h=6.626(10)^{-34}J.s=6.626(10)^{-34}\frac{m^{2}kg}{s}[/tex] is the Planck constant
So, we will use the value of [tex]p_{e}[/tex] found in (3) for equation (4):
[tex]\lambda_{e}=\frac{6.626(10)^{-34}J.s}{2.091(10)^{-24}\frac{kgm}{s}}[/tex]
[tex]\lambda_{e}=3.168(10)^{-10}m[/tex] (5)
We are told the wavelength of the photon [tex]\lambda_{p}[/tex] is the same as the wavelength of the electron:
[tex]\lambda_{e}=\lambda_{p}=3.168(10)^{-10}m[/tex] (6)
Therefore we will use this wavelength to find the energy of the photon [tex]E_{p}[/tex] using the following equation:
[tex]E_{p}=\frac{hc}{lambda_{p}}[/tex] (7)
Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum
[tex]E_{p}=\frac{(6.626(10)^{-34}J.s)(3(10)^{8}m/s)}{3.168(10)^{-10}m}[/tex]
Finally:
[tex]E_{p}=6.268(10)^{-16}J[/tex]
The energy of a photon is about 6.3 × 10⁻¹⁶ Joule
[tex]\texttt{ }[/tex]
Further explanation
The term of package of electromagnetic wave radiation energy was first introduced by Max Planck. He termed it with photons with the magnitude is :
[tex]\large {\boxed {E = h \times f}}[/tex]
E = Energi of A Photon ( Joule )
h = Planck's Constant ( 6.63 × 10⁻³⁴ Js )
f = Frequency of Eletromagnetic Wave ( Hz )
[tex]\texttt{ }[/tex]
The photoelectric effect is an effect in which electrons are released from the metal surface when illuminated by electromagnetic waves with large enough of radiation energy.
[tex]\large {\boxed {E = \frac{1}{2}mv^2 + \Phi}}[/tex]
[tex]\large {\boxed {E = qV + \Phi}}[/tex]
E = Energi of A Photon ( Joule )
m = Mass of an Electron ( kg )
v = Electron Release Speed ( m/s )
Ф = Work Function of Metal ( Joule )
q = Charge of an Electron ( Coulomb )
V = Stopping Potential ( Volt )
Let us now tackle the problem !
[tex]\texttt{ }[/tex]
Given:
kinetic energy of an electron = Ek = 15 eV = 2.4 × 10⁻¹⁸ Joule
Asked:
energy of photon = E = ?
Solution:
Firstly , we will use the formula of kinetic energy:
[tex]Ek = \frac{1}{2}mv^2[/tex]
[tex]v^2 = \frac{2Ek}{m}[/tex]
[tex]v = \sqrt{ \frac{2Ek}{m}}[/tex]
[tex]\texttt{ }[/tex]
Next , we will use the formula of The Broglie's Wavelength:
[tex]\lambda = \frac{h}{mv}[/tex]
[tex]\lambda = \frac{h}{m\sqrt{2Ek/m}}[/tex]
[tex]\lambda = \frac{h}{\sqrt{2mEk}}[/tex]
[tex]\texttt{ }[/tex]
[tex]E = h f[/tex]
[tex]E = h \frac{c}{\lambda}[/tex]
[tex]E = h \frac{c}{\frac{h}{\sqrt{2mEk}}}[/tex]
[tex]E = c\sqrt{2mEk}[/tex]
[tex]E = 3 \times 10^8 (\sqrt{2(9.11 \times 10^{-31} \times 2.4 \times 10^{-18}}[/tex]
[tex]E \approx 6.3 \times 10^{-16} \texttt{ Joule}[/tex]
[tex]\texttt{ }[/tex]
Learn more
- Photoelectric Effect : https://brainly.com/question/1408276
- Statements about the Photoelectric Effect : https://brainly.com/question/9260704
- Rutherford model and Photoelecric Effect : https://brainly.com/question/1458544
[tex]\texttt{ }[/tex]
Answer details
Grade: College
Subject: Physics
Chapter: Quantum Physics
[tex]\texttt{ }[/tex]
Keywords: Quantum , Physics , Photoelectric , Effect , Threshold , Wavelength , Stopping , Potential , Copper , Surface , Ultraviolet , Light
