Calculate the energy of a photon having a wavelength in thefollowing ranges.
(a) microwave, with λ = 50.00 cm
eV
(b) visible, with λ = 500 nm
eV
(c) x-ray, with λ = 0.50 nm
eV

Respuesta :

Answers:

The energy [tex]E[/tex] of a photon is given by the following formula:

[tex]E=h.f[/tex] (1)

Where:

[tex]h=4.136(10)^{-15}eV.s[/tex] is the Planck constant

[tex]f[/tex] is the frequency

Now, the frequency has an inverse relation with the wavelength [tex]\lambda[/tex]:

[tex]f=\frac{c}{\lambda}[/tex] (2)

Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum

Substituting (2) in (1):

[tex]E=\frac{hc}{\lambda}[/tex] (3)

Knowing this, let's begin with the answers:

(a) Microwave: 50.00 cm

For [tex]\lambda=50cm=0.5m[/tex]

[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5m}[/tex]  

[tex]E=\frac{1.24(10)^{-6}eV.m }{0.5m}[/tex]  

[tex]E=2.48(10)^{-6}eV[/tex]  

(b) Visible: 500 nm

For [tex]\lambda=500nm=500(10)^{-9}m[/tex]

[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{500(10)^{-9}m}[/tex]  

[tex]E=\frac{1.24(10)^{-6}eV.m }{500(10)^{-9}m}[/tex]  

[tex]E=2.48 eV[/tex]  

(c) X-ray: 0.5 nm

For [tex]\lambda=0.5nm=0.5(10)^{-9}m[/tex]

[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5(10)^{-9}m}[/tex]  

[tex]E=\frac{1.24(10)^{-6}eV.m }{0.5(10)^{-9}m}[/tex]  

[tex]E=2480 eV[/tex]  

As we can see, as the wavelength decreases, the energy increases.