The energy [tex]E[/tex] of a photon is given by the following formula:
[tex]E=h.f[/tex] (1)
Where:
[tex]h=4.136(10)^{-15}eV.s[/tex] is the Planck constant
[tex]f[/tex] is the frequency
Now, the frequency has an inverse relation with the wavelength [tex]\lambda[/tex]:
[tex]f=\frac{c}{\lambda}[/tex] (2)
Where [tex]c=3(10)^{8}m/s[/tex] is the speed of light in vacuum
Substituting (2) in (1):
[tex]E=\frac{hc}{\lambda}[/tex] (3)
Knowing this, let's begin with the answers:
For [tex]\lambda=50cm=0.5m[/tex]
[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5m}[/tex]
[tex]E=\frac{1.24(10)^{-6}eV.m }{0.5m}[/tex]
[tex]E=2.48(10)^{-6}eV[/tex]
For [tex]\lambda=500nm=500(10)^{-9}m[/tex]
[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{500(10)^{-9}m}[/tex]
[tex]E=\frac{1.24(10)^{-6}eV.m }{500(10)^{-9}m}[/tex]
[tex]E=2.48 eV[/tex]
For [tex]\lambda=0.5nm=0.5(10)^{-9}m[/tex]
[tex]E=\frac{(4.136(10)^{-15} eV.s)(3(10)^{8}m/s)}{0.5(10)^{-9}m}[/tex]
[tex]E=\frac{1.24(10)^{-6}eV.m }{0.5(10)^{-9}m}[/tex]
[tex]E=2480 eV[/tex]
As we can see, as the wavelength decreases, the energy increases.