Respuesta :

I guess the sequence is

[tex]a_n=\dfrac{1^2}{n^3}+\dfrac{2^2}{n^3}+\cdots\dfrac{n^2}{n^3}[/tex]

which we can write as

[tex]a_n=\displaystyle\frac1{n^3}\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6n^3}=\dfrac{2n^2+3n+1}{6n^2}[/tex]

[tex]a_n[/tex] converges if it is bounded and monotonic. Consider the function,

[tex]f(x)=\dfrac{2x^2+3x+1}{6x^2}=\dfrac13+\dfrac1{2x}+\dfrac1{6x^2}[/tex]

which has derivative

[tex]f'(x)=-\dfrac1{2x^2}-\dfrac1{3x^3}[/tex]

[tex]f'<0[/tex] for all [tex]x>0[/tex], so [tex]f(x)[/tex] is monotonically decreasing on [tex](0,\infty)[/tex], and as [tex]x\to\infty[/tex] we have

[tex]\displaystyle\lim_{x\to\infty}f(x)=\dfrac13[/tex]

So we know that [tex]a_n[/tex] is monotonically decreasing and bounded below by [tex]\dfrac13[/tex].

To find the limit, we can also write

[tex]a_n=\dfrac{2+\frac3n+\frac1{n^2}}6[/tex]

As [tex]n\to\infty[/tex], the rational terms vanish and we're left with

[tex]\displaystyle\lim_{n\to\infty}\frac26=\frac13[/tex]

The converges and limit will be [tex]\dfrac{1}{3}\ and\ \dfrac{1}{3}[/tex]

Sequence and series

It is the sum of the sequence of terms.

Given

[tex]\rm a_{n} = \dfrac{1^{2} }{n^{3} } + \dfrac{2^{2} }{n^{3} } + ........\ +\dfrac{n^{2} }{n^{3} }[/tex]

How to calculate converges and limit?

[tex]a_{n} = \dfrac{1}{n^{3} } \sum_{k=1}^{n} k^{2}[/tex]

[tex]a_{n}[/tex] converges if it is bounded and monotonic

[tex]f(x)=\dfrac{2x^{2} +3x+1}{6x^{2} } = \dfrac{1}{3} + \dfrac{1}{2x} + \dfrac{1}{6x^{2} }[/tex]

And it's derivative

[tex]f'(x) = - \dfrac{1}{2x^{2} } - \dfrac{1}{3x^{3} }[/tex]

And   [tex]\displaystyle \lim_{ x\to \infty } f(x)=\dfrac{1}{3}[/tex]

To find the limit,

[tex]a_{n} = \dfrac{2+ \frac{3}{n} + \frac{1}{n^{2} } }{6}[/tex]

As [tex]n\to \infty[/tex]

Then

[tex]a_{n} = \dfrac{1}{3}[/tex]

Thus, the converges and limit will be [tex]\dfrac{1}{3}\ and\ \dfrac{1}{3}[/tex]

More about the Sequence and series link is given below.

https://brainly.com/question/8195467

RELAXING NOICE
Relax