Answer:
As you've mentioned, [tex]h'(2) = -168[/tex]. See explanation.
Step-by-step explanation:
[tex]h(x) = g(f(x^{2}))[/tex] is a composite function about [tex]x[/tex].
[tex]\displaystyle \begin{aligned}h'(x) &= \frac{d}{dx}[g(f(x^{2}))] \\ &=g'(f(x^{2}) \cdot \frac{d}{dx}[f(x^{2})]&&\text{Chain rule; treat} \; f(x^{2})\;\text{as the inner function.} \\&=g'(f(x)^{2})\cdot f'(x^{2})\cdot \frac{d}{dx}[x^{2}] &&\text{Chain rule; treat} \; x^{2}\;\text{as the inner function.} \\ &= g'(f(x^{2}))\cdot f'(x^{2}) \cdot 2\;x&&\text{Power Rule.}\; \frac{d}{dx}[x^{2}] = 2\;x. \\&= 2\;x \cdot f'(x^{2})\cdot g'(f(x^{2}))\end{aligned}[/tex].
For [tex]x = 2[/tex]:
[tex]\displaystyle h'(x) = 2\;x \cdot f'(x^{2})\cdot g'(f(x^{2})) = -168[/tex].