Respuesta :

Answer:

[tex]m<VPL=80\°[/tex]

Step-by-step explanation:

step 1

Find the measure of arc PK

we know that

The measure of the inner angle is the semi-sum of the arcs comprising it and its opposite.

Let

x------> the measure of arc IV

y ------> the measure of arc PK

[tex]m<ISV=\frac{1}{2}(x+y)[/tex]

substitute the values and solve for y

[tex]135\°=\frac{1}{2}(140\°+y)[/tex]

[tex]270\°=(140\°+y)[/tex]

[tex]y=270\°-140\°=130\°[/tex]

The measure of arc PK is [tex]130\°[/tex]

step 2

Find the measure of angle VPL

we know that

The inscribed angle measures half that of the arc comprising

Let

z------> the measure of arc VK

y ------> the measure of arc PK

[tex]m<VPL=\frac{1}{2}(z+y)[/tex]

substitute the values

[tex]m<VPL=\frac{1}{2}(30\°+130\°)=80\°[/tex]

ACCESS MORE