Respuesta :

Answer: [tex]x_1=-1+2i\sqrt{2}}}\\\\x_2=-1-2i\sqrt{2}}[/tex]

Step-by-step explanation:

Use que Quadratic formula:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

Given the quadratic equation [tex]x^2 + 2x + 9 = 0[/tex], you can identify that:

[tex]a=1\\ b=2\\ c=9[/tex]

Then, substitute values into the quadratic formula and simplify.

Remember that [tex]\sqrt{-1}=i[/tex]

Then:

[tex]x=\frac{-2\±\sqrt{2^2-4(1)(9)}}{2(1)}[/tex]

[tex]x=\frac{-2\sqrt{-32}}{2}[/tex]

[tex]x=\frac{-2\±4i\sqrt{2}}{2}\\\\x=\frac{2(-1\±2i\sqrt{2})}{2}\\\\\\x_1=-1+2i\sqrt{2}}}\\\\x_2=-1-2i\sqrt{2}}[/tex]

Answer:

Solution of given equation are,

x₁ =  -1 + 2i√2 and   x₂ =  -1 - 2i√2

Step-by-step explanation:

It s given a quadratic equation,

x² + 2x + 9 =0

To solve the equation

we have,

x = [-b ± √(b² - 4ac)]/2a

Here a = 1, b =2 and c = 9

x =  [-2 ± √(2² - 4* 1 * 9)]/2*1

x = [-2 ± √-32]/2

x = [-1 ± 2i√2]

x₁ =  -1 + 2i√2 and   x₂ =  -1 - 2i√2

ACCESS MORE
EDU ACCESS