Respuesta :
Answer: [tex]x_1=-1+2i\sqrt{2}}}\\\\x_2=-1-2i\sqrt{2}}[/tex]
Step-by-step explanation:
Use que Quadratic formula:
[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]
Given the quadratic equation [tex]x^2 + 2x + 9 = 0[/tex], you can identify that:
[tex]a=1\\ b=2\\ c=9[/tex]
Then, substitute values into the quadratic formula and simplify.
Remember that [tex]\sqrt{-1}=i[/tex]
Then:
[tex]x=\frac{-2\±\sqrt{2^2-4(1)(9)}}{2(1)}[/tex]
[tex]x=\frac{-2\sqrt{-32}}{2}[/tex]
[tex]x=\frac{-2\±4i\sqrt{2}}{2}\\\\x=\frac{2(-1\±2i\sqrt{2})}{2}\\\\\\x_1=-1+2i\sqrt{2}}}\\\\x_2=-1-2i\sqrt{2}}[/tex]
Answer:
Solution of given equation are,
x₁ = -1 + 2i√2 and x₂ = -1 - 2i√2
Step-by-step explanation:
It s given a quadratic equation,
x² + 2x + 9 =0
To solve the equation
we have,
x = [-b ± √(b² - 4ac)]/2a
Here a = 1, b =2 and c = 9
x = [-2 ± √(2² - 4* 1 * 9)]/2*1
x = [-2 ± √-32]/2
x = [-1 ± 2i√2]
x₁ = -1 + 2i√2 and x₂ = -1 - 2i√2