Answer:
A) μ = 590.45 mm; B) σ² = 0.053 mm
Step-by-step explanation:
To find the mean, we add together all of the values and divide by the number of data values:
590.1+590.2+590.3+590.4+590.5+590.6+590.7+590.8 = 4723.6
There are 8 data values; this gives us
4723.6/8 = 590.45
To find the variance, we subtract each of the data values from the mean. We then square this difference, and find the mean of the squares:
590.1-590.45 = -0.35; (-0.35)² = 0.1225
590.2-590.45 = -0.25; (-0.25)² = 0.0625
590.3-590.45 = -0.15; (-0.15)² = 0.0225
590.4-590.45 = -0.05; (-0.05)² = 0.0025
590.5-590.45 = 0.05; (0.05)² = 0.0025
590.6-590.45 = 0.15; (0.15)² = 0.0225
590.7-590.45 = 0.25; (0.25)² = 0.0625
590.8-590.45 = 0.35; (0.35)² = 0.1225
(0.1225+0.0625+0.0225+0.0025+0.0025+0.0225+0.0625+0.1225)/8
= 0.42/8 = 0.0525 ≈ 0.053