Respuesta :
Answer:
[tex]8.35 m/s^2[/tex]
Explanation:
We are given that
Mass of crate=250 kg
[tex]\theta=30^{\circ}[/tex]
Coefficient of kinetic friction between the crate and ramp=0.22
Horizontal force applied on the crate=5000 N
We have to find the acceleration of the crate.
The normal force acting on the crate
[tex]=N=Fsin\theta+mgcos\theta=5000sin 30^{\circ}+250\times 9.8\times cos30^{\circ}=4623.93 N[/tex]
The friction force acting against the motion of crate=[tex]0.22\times 4623.93=1017.26 N[/tex]
According to newton's second law, the net force accelerating the crate
[tex]ma=Fcos\theta-(F_f+mgsin\theta)[/tex]
[tex]a=\frac{5000cos 30^{\circ}-(1017.26+250\times 9.8 sin30^{\circ}}{250}[/tex]
[tex]a=8.35 m/s^2[/tex]
Hence, the acceleration of the crate=[tex]8.35 m/s^2[/tex]
Answer:
The acceleration of crate is [tex]8.35 \;\rm m/s^{2}[/tex].
Explanation:
Given data:
Mass of crate is, [tex]m=250 \;\rm kg[/tex].
Angle of inclination is, [tex]\theta = 30^{\circ}[/tex].
The coefficient of kinetic friction between crate and ramp is, [tex]\mu = 0.22[/tex].
Magnitude of horizontal force is, [tex]F=5000 \;\rm N[/tex].
In an inclined plane, the net force acting on the crate is given as,
[tex]F_{net}=Fcos\theta-(f+mgsin\theta)\\m a=Fcos\theta-(f+mgsin\theta)[/tex]
Here, a is the linear acceleration and g is the gravitational acceleration.
f is the frictional force in an inclined plane and its value is,
[tex]f=\mu \times N[/tex]
N is the normal reaction acting on crate in an inclined plane and its value is,
[tex]N=Fsin\theta+mgcos\theta\\N=5000 \times sin30+(250 \times 9.8 \times cos30)\\N=5000 \times sin30+(250 \times 9.8 \times cos30)\\N=4621.76 N[/tex]
Then frictional force is,
[tex]f=0.22 \times 4621.76=1016.78 \;\rm N[/tex]
Then acceleration is,
[tex]m a=Fcos\theta-(f+mgsin\theta)\\250 \times a=5000 \times cos30-(1016.78+250 \times 9.8 \times sin30)\\a=8.35 \;\rm m/s^{2}[/tex]
Thus, the acceleration of crate is [tex]8.35 \;\rm m/s^{2}[/tex].
For more details, refer the link:
https://brainly.com/question/13204125?referrer=searchResults