Respuesta :
Answer: 125 g
Step-by-step explanation:
[tex]A = P_o\cdot e^{kt}\\\\\text{First, use the given information to find k:}\\\\\bullet A=\dfrac{1}{2}P_o\\\\\bullet k = unknown\\\\\bullet t=29\text{ years}\\\\\dfrac{1}{2}P_o=P_o\cdot e^{k(29)}\\\\\\\dfrac{1}{2}=e^{k(29)}\qquad divided\ both\ sides\ by\ P_o\\\\\\ln\bigg(\dfrac{1}{2}\bigg)=ln\bigg(e^{k(29)}\bigg)\qquad applied\ ln\ to\ both\ sides\\\\\\ln\bigg(\dfrac{1}{2}\bigg)=29k\qquad simplified-ln\ and\ e\ cancel\ out\\\\\\\dfrac{ln\bigg(\dfrac{1}{2}\bigg)}{29}=k\qquad divided\ 29\ from\ both\ sides\\\\\\-0.0239=k[/tex]
[tex]\text{Now, use the following in the equation to solve for A:}\\\\\bullet A=unknown\\\bullet P_o=500\\\bullet k=-0.0239\\\bullet t=58\text{ years}\\\\A=500\cdot e^{(-0.0239)(58)}\\\\.\quad=500\cdot e^{-1.386}\\\\.\quad=125[/tex]
Answer:
Step-by-step explanation:
=500(1+0.5)^2 the final answer is 125