Respuesta :
Answer:
$4125.
Step-by-step explanation:
When solving for the principal we still need to use the formula [tex]A = P(1+\dfrac{r}{n})^{nt}[/tex].
Let's take all the variables that we do have available and list them out.
A = $4369.20
r = 3.3% or 0.033
n = 4 (Quarterly)
t = 21 months or 1.75 years
Now we can substitute the values and solve for the principal.
[tex]A=P(1+\dfrac{r}{n})^{nt}[/tex]
[tex]4369.20=P(1+\dfrac{0.033}{4})^{4(1.75)}[/tex]
[tex]4369.20=P(1+0.00825)^{7}[/tex]
[tex]4369.20=P(1.00825)^{7}[/tex]
[tex]4369.20=P(1.05919912849)[/tex]
Now we need to divide both sides with 1.05919912849 to get the principal.
[tex]\dfrac{4369.20}{1.05919912849}=\dfrac{P(1.05919912849)}{1.05919912849}[/tex]
P = 4125.00339406 or $4125.
To check for our answer, we can simply substitute the values including the principal and excluding the total.
[tex]A=P(1+\dfrac{r}{n})^{nt}[/tex]
[tex]A=4125(1+\dfrac{0.033}{4})^{4(1.75)}[/tex]
[tex]A=4125(1+0.00825)^{7}[/tex]
[tex]A=4125(1.00825)^{7}[/tex]
[tex]A=4125(1.05919912849)[/tex]
[tex]A=4369.19640502[/tex] or [tex]4369.20[/tex]