Locating zeros of polynomial functions

Answer:
[tex]a.\:\:-1,1[/tex]
Step-by-step explanation:
The given polynomial function is;
[tex]f(x)=2x^4-x^3+x-2[/tex]
According to the rational roots theorem, the possible rational roots are
[tex]\pm \frac{1}{2} ,\pm1,\pm2[/tex]
We now use the remainder theorem to obtain;
[tex]f(1)=2(1)^4-(1)^3+(1)-2[/tex]
[tex]f(1)=2-1+1-2[/tex]
[tex]f(1)=0[/tex]
This implies that, [tex]x=-1[/tex] is a zero.
Also,
[tex]f(-1)=2(-1)^4-(-1)^3+(-1)-2[/tex]
[tex]f(-1)=2+1-1-2[/tex]
[tex]f(-1)=0[/tex]
This means that, [tex]x=1[/tex] is also a zero.
[tex]f(\frac{1}{2})=-\frac{7}{4}[/tex]
[tex]f(-\frac{1}{2})=-\frac{7}{4}[/tex]
[tex]f(2)=2[/tex]
[tex]f(-2)=2[/tex]
Hence the zeros are [tex]-1,1[/tex]