Respuesta :

Answer:

[tex]a.\:\:-1,1[/tex]

Step-by-step explanation:

The given polynomial function is;

[tex]f(x)=2x^4-x^3+x-2[/tex]

According to the rational roots theorem, the possible rational roots are

[tex]\pm \frac{1}{2} ,\pm1,\pm2[/tex]

We now use the remainder theorem to obtain;

[tex]f(1)=2(1)^4-(1)^3+(1)-2[/tex]

[tex]f(1)=2-1+1-2[/tex]

[tex]f(1)=0[/tex]

This implies that, [tex]x=-1[/tex] is a zero.

Also,

[tex]f(-1)=2(-1)^4-(-1)^3+(-1)-2[/tex]

[tex]f(-1)=2+1-1-2[/tex]

[tex]f(-1)=0[/tex]

This means that, [tex]x=1[/tex] is also a zero.

[tex]f(\frac{1}{2})=-\frac{7}{4}[/tex]

[tex]f(-\frac{1}{2})=-\frac{7}{4}[/tex]

[tex]f(2)=2[/tex]

[tex]f(-2)=2[/tex]

Hence the zeros are [tex]-1,1[/tex]

ACCESS MORE