Respuesta :
Answer:
[tex]AB=9cm[/tex] and [tex]DG=\frac{28}{3}cm[/tex]
Step-by-step explanation:
Given triangles ABC and DFG such that AB·DG=AC·DF and ∠A≅∠D
and AC=7 cm, BC=15 cm, FG=20 cm, and DF-AB=3 cm.
We have to find all other sides of triangle.
Now, AB·DG=AC·DF
⇒ [tex]\frac{AB}{DF}=\frac{AC}{DG}[/tex]
and ∠A≅∠D
Hence, by SAS rule ΔABC~ΔDFG
⇒ [tex]\frac{AB}{DF}=\frac{AC}{DG}=\frac{BC}{GF}[/tex]
⇒ [tex]\frac{AB}{3+DF}=\frac{7}{DG}=\frac{15}{20}[/tex]
⇒ [tex]\frac{AB}{3+DF}=\frac{15}{20}[/tex]
⇒ 20AB=45+15AB ⇒ 5AB=45 ⇒ AB=9 cm
Also, [tex]\frac{7}{DG}=\frac{15}{20}[/tex]
⇒ [tex]DG=\frac{28}{3}cm[/tex]
The measure of the length DG is 28/3cm and AB is 9cm.
What is the similarity theorem of a triangle?
If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.
By using the similarity theorem of a triangle:
[tex]\rm\dfrac{AC}{BC}=\dfrac{DG}{FG}\\\\\ \dfrac{7}{15}=\dfrac{DG}{20}\\\\7 \times 20=DG\times 15\\\\140=15 DG\\\\DG=\dfrac{140}{15}\\\\DG=\dfrac{28}{3}[/tex]
And the measure of AB is;
DF - AB = 3 cm
AB = 3+6 = 9cm
Hence, the measure of the length DG is 28/3cm and AB is 9cm.
To know more about the Similarity theorem click the link given below.
brainly.com/question/11977990