Respuesta :
QUESTION 6
We want to simplify;
[tex] \frac{x - 2}{x + 5} + \frac{3x}{2x - 1} [/tex]
We collect LCM to get,
[tex] = \frac{(x - 2)(2x - 1) + 3x(x + 5)}{(x + 5)(2x - 1)} [/tex]
Expand the numerator to get;
[tex] = \frac{2 {x}^{2} - x - 4x + 2+ 3 {x}^{2} + 15x}{(x + 5)(2x - 1)} [/tex]
[tex] = \frac{2 {x}^{2} +3 {x}^{2}- x - 4x +15x + 2 }{(x + 5)(2x - 1)} [/tex]
[tex] = \frac{5{x}^{2} + 10x + 2 }{(x + 5)(2x - 1)} [/tex]
QUESTION 7
The given expression is
[tex] \frac{x + 6}{x - 6} - \frac{ {x}^{2} }{x + 6} [/tex]
[tex] = \frac{(x + 6)(x - 6) - {x}^{2}(x - 6) }{(x - 6)(x + 6)} [/tex]
Expand the bracket to obtain,
[tex] = \frac{{x}^{2} - 36 - {x}^{3} + 6 {x}^{2} }{(x - 6)(x + 6)} [/tex]
This simplifies to
[tex] = \frac{ - {x}^{3} + 7{x}^{2} - 36 }{(x - 6)(x + 6)} [/tex]
QUESTION 8
We want to simplify
[tex] \frac{x + 9}{x - 4} + \frac{x + 2}{ {x}^{2} - 11x + 28 } [/tex]
Let us factor the denominator of the fraction first.
[tex] = \frac{x + 9}{x - 4} + \frac{x + 2}{ {x}^{2} - 7x - 4x+ 28 } [/tex]
[tex] = \frac{x + 9}{x - 4} + \frac{x + 2}{ x(x - 7) - 4(x - 7)} [/tex]
[tex] = \frac{x + 9}{x - 4} + \frac{x + 2}{ (x - 7)(x- 4)} [/tex]
We collect LCM to obtain;
[tex] = \frac{(x + 9)(x - 7) + (x + 2)}{ (x - 7)(x- 4)} .[/tex]
We expand brackets to get;
[tex] = \frac{ {x}^{2} - 7x + 9x - 63+ x + 2}{ (x - 7)(x- 4)} .[/tex]
[tex] = \frac{ {x}^{2} + 3x - 61}{ (x - 7)(x- 4)} .[/tex]
QUESTION 9
The given expression is
[tex] \frac{x}{ {x}^{2} - 64} + \frac{11}{2 {x}^{2} + 11x - 40} [/tex]
We factor the numerator of the second fraction to get,
[tex] \frac{x}{ {x}^{2} - {8}^{2} } + \frac{11}{2 {x}^{2} + 16x - 5x- 40} [/tex]
[tex] = \frac{x}{ {x}^{2} - {8}^{2} } + \frac{11}{2 x(x + 8) - 5(x + 8)} [/tex]
This implies that,
[tex] = \frac{x}{ (x - 8)( x + 8)} + \frac{11}{(2 x - 5)(x + 8)} .[/tex]
We collect LCM to get,
[tex] = \frac{x(2x - 5) + 11(x - 8)}{(2 x - 5)(x + 8)(x - 8)} [/tex]
[tex] = \frac{2 {x}^{2} - 5x + 11x - 88}{(2 x - 5)(x + 8)(x - 8)} [/tex]
[tex] = \frac{2 {x}^{2} + 6x - 88}{(2 x - 5)(x + 8)(x - 8)} [/tex]
QUESTION 10
The given expression is
[tex] \frac{5}{x} + \frac{11}{x - 3} - \frac{x - 4}{ {x}^{2} + 2x - 15} [/tex]
We factor the denominator to obtain:
[tex] \frac{5}{x} + \frac{11}{x - 3} - \frac{x - 4}{ (x - 3)(x + 5)} [/tex]
We collect LCM to get;
[tex] \frac{5(x - 3)(x + 5) + 11x(x + 5) - x(x - 4)}{ x(x - 3)(x + 5)} [/tex]
We expand brackets to get,
[tex] \frac{5 {x}^{2} + 10x - 75 + 11 {x}^{2} + 55x- {x}^{2} + 4x}{ x(x - 3)(x + 5)} [/tex]
[tex] \frac{15 {x}^{2} + 69x - 75 }{ x(x - 3)(x + 5)} [/tex]
We want to simplify;
[tex] \frac{x - 2}{x + 5} + \frac{3x}{2x - 1} [/tex]
We collect LCM to get,
[tex] = \frac{(x - 2)(2x - 1) + 3x(x + 5)}{(x + 5)(2x - 1)} [/tex]
Expand the numerator to get;
[tex] = \frac{2 {x}^{2} - x - 4x + 2+ 3 {x}^{2} + 15x}{(x + 5)(2x - 1)} [/tex]
[tex] = \frac{2 {x}^{2} +3 {x}^{2}- x - 4x +15x + 2 }{(x + 5)(2x - 1)} [/tex]
[tex] = \frac{5{x}^{2} + 10x + 2 }{(x + 5)(2x - 1)} [/tex]
QUESTION 7
The given expression is
[tex] \frac{x + 6}{x - 6} - \frac{ {x}^{2} }{x + 6} [/tex]
[tex] = \frac{(x + 6)(x - 6) - {x}^{2}(x - 6) }{(x - 6)(x + 6)} [/tex]
Expand the bracket to obtain,
[tex] = \frac{{x}^{2} - 36 - {x}^{3} + 6 {x}^{2} }{(x - 6)(x + 6)} [/tex]
This simplifies to
[tex] = \frac{ - {x}^{3} + 7{x}^{2} - 36 }{(x - 6)(x + 6)} [/tex]
QUESTION 8
We want to simplify
[tex] \frac{x + 9}{x - 4} + \frac{x + 2}{ {x}^{2} - 11x + 28 } [/tex]
Let us factor the denominator of the fraction first.
[tex] = \frac{x + 9}{x - 4} + \frac{x + 2}{ {x}^{2} - 7x - 4x+ 28 } [/tex]
[tex] = \frac{x + 9}{x - 4} + \frac{x + 2}{ x(x - 7) - 4(x - 7)} [/tex]
[tex] = \frac{x + 9}{x - 4} + \frac{x + 2}{ (x - 7)(x- 4)} [/tex]
We collect LCM to obtain;
[tex] = \frac{(x + 9)(x - 7) + (x + 2)}{ (x - 7)(x- 4)} .[/tex]
We expand brackets to get;
[tex] = \frac{ {x}^{2} - 7x + 9x - 63+ x + 2}{ (x - 7)(x- 4)} .[/tex]
[tex] = \frac{ {x}^{2} + 3x - 61}{ (x - 7)(x- 4)} .[/tex]
QUESTION 9
The given expression is
[tex] \frac{x}{ {x}^{2} - 64} + \frac{11}{2 {x}^{2} + 11x - 40} [/tex]
We factor the numerator of the second fraction to get,
[tex] \frac{x}{ {x}^{2} - {8}^{2} } + \frac{11}{2 {x}^{2} + 16x - 5x- 40} [/tex]
[tex] = \frac{x}{ {x}^{2} - {8}^{2} } + \frac{11}{2 x(x + 8) - 5(x + 8)} [/tex]
This implies that,
[tex] = \frac{x}{ (x - 8)( x + 8)} + \frac{11}{(2 x - 5)(x + 8)} .[/tex]
We collect LCM to get,
[tex] = \frac{x(2x - 5) + 11(x - 8)}{(2 x - 5)(x + 8)(x - 8)} [/tex]
[tex] = \frac{2 {x}^{2} - 5x + 11x - 88}{(2 x - 5)(x + 8)(x - 8)} [/tex]
[tex] = \frac{2 {x}^{2} + 6x - 88}{(2 x - 5)(x + 8)(x - 8)} [/tex]
QUESTION 10
The given expression is
[tex] \frac{5}{x} + \frac{11}{x - 3} - \frac{x - 4}{ {x}^{2} + 2x - 15} [/tex]
We factor the denominator to obtain:
[tex] \frac{5}{x} + \frac{11}{x - 3} - \frac{x - 4}{ (x - 3)(x + 5)} [/tex]
We collect LCM to get;
[tex] \frac{5(x - 3)(x + 5) + 11x(x + 5) - x(x - 4)}{ x(x - 3)(x + 5)} [/tex]
We expand brackets to get,
[tex] \frac{5 {x}^{2} + 10x - 75 + 11 {x}^{2} + 55x- {x}^{2} + 4x}{ x(x - 3)(x + 5)} [/tex]
[tex] \frac{15 {x}^{2} + 69x - 75 }{ x(x - 3)(x + 5)} [/tex]