Randy and Molly are selling pies for a school fundraiser customers can buy blueberry pies and pumpkin pies brandy sold 6 blueberry pies and for pumpkin pies for a total of $106 Molly sold 6 blueberry pies and 3 pumpkin pies for a total of $90 find the cost of each one blueberry pie and 1 pumpkin pie

Respuesta :

MsRay

Answer:

One blueberry pie = $7

One pumpkin pie = $16

Step-by-step explanation:

Since there are two variables in this problem - the cost of blueberry pie and the cost of pumpkin pie, we can set up a system of equations to solve.  Since Brandy sold 6 blueberry pies and 4 pumpkin pies for $106, our first equation is:   6b + 4p = 106.

Molly sold 6 blueberry and 3 pumpkin for $90, so the second equation is: 6b + 3p = $90.

We can use elimination to add the two equations together and eliminate one variable while we solve for the other:

6b + 4p = 106

6b + 3p = 90

In order to eliminate a variable, you can multiply the first equation by -1:

-1(6b + 4p = 106) = -6b - 4p = -106

Add 6b + 3p = 90

-p = -16, so p = 16

Now, solve for b:  6b + 3(16) = 106 or 6b + 48 = 90

Subtract 48 from both sides:  6b + 48 - 48 = 90-48

Divide by 6:  6b/6 = 42/6

Solve for b: b = 7


ACCESS MORE
EDU ACCESS
Universidad de Mexico