Answer:
The measure of [tex]\angle 8[/tex] is 60°
[tex]\angle 1[/tex] and [tex]\angle 5[/tex] are corresponding angles.
Step-by-step explanation:
Given that, [tex]m\angle 2= 120\°[/tex]
In the given diagram, [tex]\angle 2[/tex] and [tex]\angle 6[/tex] are corresponding angles and their measures are same.
So, [tex]m\angle 6= 120\°[/tex]
Now, [tex]\angle 6[/tex] and [tex]\angle 8[/tex] are pair of linear angles.
That means......
[tex]m\angle 6+m\angle 8= 180[/tex]°
[tex]\Rightarrow 120\°+m\angle 8=180\°\\ \\ \Rightarrow m\angle 8= 180\°-120\°\\ \\ \Rightarrow m\angle 8=60\°[/tex]
So, the measure of [tex]\angle 8[/tex] is 60°
The type of angles for [tex]\angle 1[/tex] and [tex]\angle 5[/tex] is corresponding.