Answer:
[tex] 2\sin^2 A - 1 [/tex]
Step-by-step explanation:
[tex] \dfrac{\tan A - \cot A}{\tan A + \cot A} = [/tex]
[tex] = \dfrac{\frac{\sin A}{\cos A} - \frac{\cos A}{\sin A}}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}} [/tex]
[tex] = \dfrac{\sin A \cos A \times (\frac{\sin A}{\cos A} - \frac{\cos A}{\sin A})}{\sin A \cos A \times (\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A})} [/tex]
[tex] = \dfrac{\sin^2 A - \cos^2 A}{\sin^2 A + \cos^2 A} [/tex]
[tex] = \dfrac{\sin^2 A - \cos^2 A}{1} [/tex]
[tex] = \sin^2 A - \cos^2 A [/tex]
Since
[tex] \sin^2 A + \cos^2 A = 1 [/tex]
we know
[tex] \cos^2 A = 1 - \sin^2 A [/tex]
we now substitute to get
[tex] = \sin^2 A - (1 - \sin^2 A) [/tex]
[tex] = \sin^2 A - 1 + \sin^2 A) [/tex]
[tex] = 2\sin^2 A - 1 [/tex]