Respuesta :

Answer:

[tex] 2\sin^2 A - 1 [/tex]

Step-by-step explanation:

[tex] \dfrac{\tan A - \cot A}{\tan A + \cot A​} = [/tex]

[tex] = \dfrac{\frac{\sin A}{\cos A} - \frac{\cos A}{\sin A}}{\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}} [/tex]

[tex] = \dfrac{\sin A \cos A \times (\frac{\sin A}{\cos A} - \frac{\cos A}{\sin A})}{\sin A \cos A \times (\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A})} [/tex]

[tex] = \dfrac{\sin^2 A - \cos^2 A}{\sin^2 A + \cos^2 A} [/tex]

[tex] = \dfrac{\sin^2 A - \cos^2 A}{1} [/tex]

[tex] = \sin^2 A - \cos^2 A [/tex]

Since

[tex] \sin^2 A + \cos^2 A = 1 [/tex]

we know

[tex] \cos^2 A = 1 - \sin^2 A [/tex]

we now substitute to get

[tex] = \sin^2 A - (1 - \sin^2 A) [/tex]

[tex] = \sin^2 A - 1 + \sin^2 A) [/tex]

[tex] = 2\sin^2 A - 1 [/tex]