Respuesta :

Answer:

C)  a = 10√3, b = 5√3, c = 15 , d = 5

Step-by-step explanation:

Here we use the ratio of 30, 60, 90 degree triangle.

The ratio of sides, 1:√3:2

2x = 10

x = 5

d = 5

b = 5√3

c = 5√3√3

c = 5*3 = 15

c = 15

a = 2(5√3)

a = 10√3

Therefore, a = 10√3, b = 5√3, c = 15 and d = 5

Thank you.

Answer:

The correct answer is C.


Step-by-step explanation:

From the [tex]60\degree[/tex] right angle triangle

[tex]\sin(60\degree)=\frac{b}{10}[/tex]


[tex]10\times \sin(60\degree)=b[/tex]


[tex]10\times \frac{\sqrt{3}}{2}=b[/tex]


[tex]5\sqrt{3}=b[/tex]

From the same [tex]60\degree[/tex] right angle triangle,



[tex]\cos(60\degree)=\frac{d}{10}[/tex]


[tex]10\times \cos(60\degree)=d[/tex]


[tex]10\times \frac{1}{2}=d[/tex]


[tex]5=d[/tex]


From the [tex]30\degree[/tex] right angle triangle



[tex]\sin(30\degree)=\frac{b}{a}[/tex]


[tex]\frac{1}{2}=\frac{5\sqrt{3}}{a}[/tex]


[tex]a=2\times 5\sqrt{3}[/tex]


[tex]a=10\sqrt{3}[/tex]

From the same [tex]30\degree[/tex] right angle triangle,

[tex]\cos(30\degree)=\frac{c}{a}[/tex]


[tex]\frac{\sqrt{3}}{2}=\frac{c}{10\sqrt{3}}[/tex]


[tex]10\sqrt{3} \times \frac{\sqrt{3}}{2}=c[/tex]



[tex]5 \times 3=c[/tex]


[tex]c=15[/tex]


The correct answer is C.








ACCESS MORE