a b c or d please hurry thanks!

Answer:
C) a = 10√3, b = 5√3, c = 15 , d = 5
Step-by-step explanation:
Here we use the ratio of 30, 60, 90 degree triangle.
The ratio of sides, 1:√3:2
2x = 10
x = 5
d = 5
b = 5√3
c = 5√3√3
c = 5*3 = 15
c = 15
a = 2(5√3)
a = 10√3
Therefore, a = 10√3, b = 5√3, c = 15 and d = 5
Thank you.
Answer:
The correct answer is C.
Step-by-step explanation:
From the [tex]60\degree[/tex] right angle triangle
[tex]\sin(60\degree)=\frac{b}{10}[/tex]
[tex]10\times \sin(60\degree)=b[/tex]
[tex]10\times \frac{\sqrt{3}}{2}=b[/tex]
[tex]5\sqrt{3}=b[/tex]
From the same [tex]60\degree[/tex] right angle triangle,
[tex]\cos(60\degree)=\frac{d}{10}[/tex]
[tex]10\times \cos(60\degree)=d[/tex]
[tex]10\times \frac{1}{2}=d[/tex]
[tex]5=d[/tex]
From the [tex]30\degree[/tex] right angle triangle
[tex]\sin(30\degree)=\frac{b}{a}[/tex]
[tex]\frac{1}{2}=\frac{5\sqrt{3}}{a}[/tex]
[tex]a=2\times 5\sqrt{3}[/tex]
[tex]a=10\sqrt{3}[/tex]
From the same [tex]30\degree[/tex] right angle triangle,
[tex]\cos(30\degree)=\frac{c}{a}[/tex]
[tex]\frac{\sqrt{3}}{2}=\frac{c}{10\sqrt{3}}[/tex]
[tex]10\sqrt{3} \times \frac{\sqrt{3}}{2}=c[/tex]
[tex]5 \times 3=c[/tex]
[tex]c=15[/tex]
The correct answer is C.