How would the expression x3 - 64 be rewritten using difference of cubes? A. (x + 4)(x2 - 4x - 16) B. (x - 4)(x2 + 4x + 16) C. (x + 4)(x2 - 4x + 16) D. (x - 4)(x2 + 16x + 4)

Respuesta :

Answer:

B. (x - 4)(x2 + 4x + 16)

Step-by-step explanation:

a3 – b3 = (a – b)(a2 + ab + b2)

substitute a=x n b=4 (cuz 64=4x4x4)

x3 - 64 = (x-4)(x2+4x+4x4)

= (x - 4)(x2 + 4x + 16)

The expression rewritten using difference of cubes as  (x - 4)(x^2 + 4x + 16). Option b is correct.

Expansion of  x^3 - 64 to be determine.

What is difference of cubes?

Difference of cube = [tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]

Here,
[tex]=x^3 - 64 \\=x^3-4^3[/tex]

a =x ; b = 4, put a and b in below equation,
[tex]a^3-b^3=(a-b)(a^2+ab+b^2)[/tex]
[tex]x^3-4^3=(x-4)(x^2+4x+16)[/tex]

Thus, the expression rewritten using difference of cubes as  (x - 4)(x^2 + 4x + 16).

Learn more about difference in cubes here:
https://brainly.com/question/14473649

#SPJ5

ACCESS MORE