In △ABC, the coordinates of vertices A and B are A(−2,4) and B(−1,1).



For each of the given coordinates of vertex C, is △ABC a right triangle?



Select Right Triangle or Not a Right Triangle for each set of coordinates.

In ABC the coordinates of vertices A and B are A24 and B11 For each of the given coordinates of vertex C is ABC a right triangle Select Right Triangle or Not a class=

Respuesta :

Given coordinates of vertices A and B are A(−2,4) and B(−1,1).

Slope of AB is : [tex]m=\frac{1-4}{-1-\left(-2\right)} =-3.[/tex]

With coordinate C(2,2).

Slope of BC is: [tex]m=\frac{1-4}{-1-\left(-2\right)}=-3[/tex]

Slopes of AB and BC are same, therefore with C(2,2) is not a right triangle.

With coordinate C(0,4)

Slope of BC is [tex]m=\frac{4-1}{0-\left(-1\right)}=3[/tex].

Slopes of AB and BC are not negative reciprocals.

Therefore, C(0,4) also not a coordinate to make a right triangle.

With coordinate (-2,1)

Slope of BC is [tex]m=\frac{1-1}{-2-\left(-1\right)}=0[/tex]

Therefore, C(-2,1) also not a coordinate to make a right triangle.

Answer:

For the given coordinates of vertex C of Option A and Option C ,△ABC is a right triangle.

Step-by-step explanation:

Coordinates of A = (−2,4)

Coordinates of B =(−1,1)

Since we are asked For each of the given coordinates of vertex C, is △ABC a right triangle

So, Option 1)

Coordinates of C = (2,2)

Now to find length of AB, BC and AC

Distance formula: [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex](x_1,y_1)=(-2,4)[/tex]

[tex](x_2,y_2)=(-1,1)[/tex]

Substitute the vales in the formula

[tex]AB=\sqrt{(-1+2)^2+(1-4)^2}[/tex]

[tex]AB=\sqrt{10}[/tex]

[tex](x_1,y_1)=(-1,1)[/tex]

[tex](x_2,y_2)=(2,2)[/tex]

Substitute the vales in the formula

[tex]BC=\sqrt{(2+1)^2+(2-1)^2}[/tex]

[tex]BC=\sqrt{10}[/tex]

[tex](x_1,y_1)=(-2,4)[/tex]

[tex](x_2,y_2)=(2,2)[/tex]

Substitute the vales in the formula

[tex]AC=\sqrt{(2+2)^2+(2-4)^2}[/tex]

[tex]AC=\sqrt{20}[/tex]

So, [tex]AB=\sqrt{10}[/tex] , [tex]BC=\sqrt{10}[/tex] and [tex]AC=\sqrt{20}[/tex]

Now to check whether it is a right angled triangle or not

We will use Pythagoras theorem

[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]

[tex](\sqrt{20})^2=(\sqrt{10})^2+(\sqrt{10})^2[/tex]

[tex]20=10+10[/tex]

[tex]20=20[/tex]

So, For Option 1 , △ABC is a right triangle.

Option 2)

Coordinates of C = (0,4)

Now to find length of AB, BC and AC

Distance formula: [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex](x_1,y_1)=(-2,4)[/tex]

[tex](x_2,y_2)=(-1,1)[/tex]

Substitute the vales in the formula

[tex]AB=\sqrt{(-1+2)^2+(1-4)^2}[/tex]

[tex]AB=\sqrt{10}[/tex]

[tex](x_1,y_1)=(-1,1)[/tex]

[tex](x_2,y_2)=(0,4)[/tex]

Substitute the vales in the formula

[tex]BC=\sqrt{(0+1)^2+(4-1)^2}[/tex]

[tex]BC=\sqrt{10}[/tex]

[tex](x_1,y_1)=(-2,4)[/tex]

[tex](x_2,y_2)=(0,4)[/tex]

Substitute the vales in the formula

[tex]AC=\sqrt{(0+2)^2+(4-4)^2}[/tex]

[tex]AC=4[/tex]

So, [tex]AB=\sqrt{10}[/tex] , [tex]BC=\sqrt{10}[/tex] and [tex]AC=4[/tex]

Now to check whether it is a right angled triangle or not

We will use Pythagoras theorem

[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]

[tex](4)^2=(\sqrt{10})^2+(\sqrt{10})^2[/tex]

[tex]16=10+10[/tex]

[tex]16 \neq20[/tex]

So, For Option 2, △ABC is not a right triangle.

Option 2)

Coordinates of C = (-2,1)

Now to find length of AB, BC and AC

Distance formula: [tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex](x_1,y_1)=(-2,4)[/tex]

[tex](x_2,y_2)=(-1,1)[/tex]

Substitute the vales in the formula

[tex]AB=\sqrt{(-1+2)^2+(1-4)^2}[/tex]

[tex]AB=\sqrt{10}[/tex]

[tex](x_1,y_1)=(-1,1)[/tex]

[tex](x_2,y_2)=(-2,1)[/tex]

Substitute the vales in the formula

[tex]BC=\sqrt{(-2+1)^2+(1-1)^2}[/tex]

[tex]BC=1[/tex]

[tex](x_1,y_1)=(-2,4)[/tex]

[tex](x_2,y_2)=(-2,1)[/tex]

Substitute the vales in the formula

[tex]AC=\sqrt{(-2+2)^2+(1-4)^2}[/tex]

[tex]AC=3[/tex]

So, [tex]AB=\sqrt{10}[/tex] , [tex]BC=1[/tex] and [tex]AC=3[/tex]

We will use Pythagoras theorem

[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]

[tex](\sqrt{10})^2=(3)^2+(1)^2[/tex]

[tex]10=9+1[/tex]

[tex]10=10[/tex]

So, For Option 3, △ABC is  a right triangle.

Hence For the given coordinates of vertex C of Option A and Option C ,△ABC is a right triangle.