Respuesta :

Answer-

The values of x, which are the roots of the polynomial are

[tex]\dfrac{11+ \sqrt{69}}{2},\ \dfrac{11- \sqrt{69}}{2}[/tex]

Solution-

The given polynomial,

[tex]=x^2 - 11x + 13[/tex]

We know that,

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Here,

a = 1, b = -11, c = 13

Putting the values,

[tex]x=\dfrac{-(-11)\pm \sqrt{(-11)^2-4\times 1\times 13}}{2\times 1}[/tex]

[tex]=\dfrac{11\pm \sqrt{121-52}}{2}[/tex]

[tex]=\dfrac{11\pm \sqrt{69}}{2}[/tex]

[tex]\therefore x=\dfrac{11+ \sqrt{69}}{2},\ \dfrac{11- \sqrt{69}}{2}[/tex]

Answer:

(11+sqrt69)/2

or

(11-sqrt69)/2

Step-by-step explanation:

ap3x