if f(x)=4x^2-6 and g(x)=x^2-4x-8,find (f-g)(x)

a.(f-g)(x)=x^2-14
b.(f-g)(x)=5x^2-4x-14
c.(f-g)(x)=3x^2+4x+2
d.(f-g)(x)=3x^2-4x-2

Respuesta :

c. Due to c. and the equation above would be equal just in a different arrangement

Answer:

[tex](f-g)(x)=3x^2+4x+2[/tex]

C is correct

Step-by-step explanation:

Given: [tex]f(x)=4x^2-6[/tex]

[tex]g(x)=x^2-4x-8[/tex]

To find : (f-g)(x)

[tex](f-g)(x)=f(x)-g(x)[/tex]

[tex]\Rightarrow (4x^2-6)-(x^2-4x-8)[/tex]

using Distributive property

[tex]\Rightarrow 4x^2-6-x^2+4x+8[/tex]

[tex]\Rightarrow 4x^2-x^2+4x+8-6[/tex]

Combine like term

[tex]\Rightarrow 3x^2+4x+2[/tex]

[tex](f-g)(x)=3x^2+4x+2[/tex]

Hence, The composite function is [tex](f-g)(x)=3x^2+4x+2[/tex]

ACCESS MORE
EDU ACCESS