Respuesta :
c. Due to c. and the equation above would be equal just in a different arrangement
Answer:
[tex](f-g)(x)=3x^2+4x+2[/tex]
C is correct
Step-by-step explanation:
Given: [tex]f(x)=4x^2-6[/tex]
[tex]g(x)=x^2-4x-8[/tex]
To find : (f-g)(x)
[tex](f-g)(x)=f(x)-g(x)[/tex]
[tex]\Rightarrow (4x^2-6)-(x^2-4x-8)[/tex]
using Distributive property
[tex]\Rightarrow 4x^2-6-x^2+4x+8[/tex]
[tex]\Rightarrow 4x^2-x^2+4x+8-6[/tex]
Combine like term
[tex]\Rightarrow 3x^2+4x+2[/tex]
[tex](f-g)(x)=3x^2+4x+2[/tex]
Hence, The composite function is [tex](f-g)(x)=3x^2+4x+2[/tex]