Respuesta :

sinR = [tex]\frac{QR}{PQ}[/tex]

noting that the sin ratio = [tex]\frac{opposite}{hypotenuse}[/tex]

opposite to ∠P is QR and hypotenuse is PQ ( opposite right angle )


Answer:

Option (c) is correct.  

[tex]\sin P=\frac{RQ}{PQ}[/tex]

Step-by-step explanation:

  Given : A right angled triangle.

We have to find the value of  [tex]\sin P[/tex]

Consider the given right angled triangle.

Using trigonometric ratio,

The Sine of angle is the ratio of perpendicular to the hypotenuse.

Mathematically written as   [tex]\sin\theta=\frac{Perpendicular}{hypotenuse}[/tex]

For the given triangle

[tex]\theta=P[/tex] , Hypotenuse = PQ and perpendicular = RQ

Substitute, we have,

[tex]\sin P=\frac{RQ}{PQ}[/tex]

Option (c) is correct.