Respuesta :
sinR = [tex]\frac{QR}{PQ}[/tex]
noting that the sin ratio = [tex]\frac{opposite}{hypotenuse}[/tex]
opposite to ∠P is QR and hypotenuse is PQ ( opposite right angle )
Answer:
Option (c) is correct.
[tex]\sin P=\frac{RQ}{PQ}[/tex]
Step-by-step explanation:
Given : A right angled triangle.
We have to find the value of [tex]\sin P[/tex]
Consider the given right angled triangle.
Using trigonometric ratio,
The Sine of angle is the ratio of perpendicular to the hypotenuse.
Mathematically written as [tex]\sin\theta=\frac{Perpendicular}{hypotenuse}[/tex]
For the given triangle
[tex]\theta=P[/tex] , Hypotenuse = PQ and perpendicular = RQ
Substitute, we have,
[tex]\sin P=\frac{RQ}{PQ}[/tex]
Option (c) is correct.