The slope-point form of a line:
[tex]y-y_0=m(x-x_0)[/tex]
We have
[tex]m=-\dfrac{1}{4}\\\\\left(-2,\ -\dfrac{9}{2}\right)\to x=-2,\ y=-\dfrac{9}{2}[/tex]
Substitute
[tex]y-\left(-\dfrac{9}{2}\right)=-\dfrac{1}{4}(x-(-2))\\\\y+\dfrac{9}{2}=-\dfrac{1}{4}(x+2)[/tex]
The slope-intercept form:
[tex]y=mx+b[/tex]
m - slope
b - y-intercept
Solve for y:
[tex]y+\dfrac{9}{2}=-\dfrac{1}{4}(x+2)\qquad|\text{use distributive property}\\\\y+\dfrac{9}{2}=-\dfrac{1}{4}x-\dfrac{1}{2}\qquad|\text{subtract}\ \dfrac{9}{2}\ \text{from both sides}\\\\y=-\dfrac{1}{4}x-\dfrac{10}{2}\\\\y=-\dfrac{1}{4}x-5[/tex]
Amswer: y-intercept = -5.