Respuesta :
Answer- (2u + 3w) × w = < 0, 2, 6 >
Solution -
Given in the problem
(u × w) = < 0, 1, 3 >
Then,
(2u + 3w) × w = (2u × w) + (3w × w)
(2u × w) = 2(u × w) = < 0×2, 1×2, 3×2 > = < 0, 2, 6 > ( ∵ Multiplying it by 3 with all components)
(3w × w) = 3(w × w) = 0 ( ∵ The cross product of any vector with itself is 0)
∴ (2u + 3w) × w = < 0, 2, 6 >
The cross product [tex](2u \,+ \,3w) \,\times \,w[/tex] is [tex](0,2,6)[/tex].
Let be [tex]u\times w = (0, 1, 3)[/tex], we proceed to simplify [tex](2u \,+ \,3w) \,\times \,w[/tex] by algebraic means:
1) [tex]u\times w = (0, 1, 3)[/tex] Given.
2) [tex](2u \,+ \,3w) \,\times \,w[/tex] Given.
3) [tex]2u \,\times \,w + 3w\,\times \,w[/tex] Distributive property.
4) [tex]2u\,\times\,w + O[/tex] Nilpotency property.
5) [tex]2\cdot (u\,\times \,w) + O[/tex] Scalar multiplication.
6) [tex]2\cdot (0, 1, 3) + (0,0,0)[/tex] Definition of zero vector, 1)
7) [tex](0, 2, 6) + (0,0,0)[/tex] Scalar multiplication.
8) [tex](0,2,6)[/tex] Vector sum/Result.
The cross product [tex](2u \,+ \,3w) \,\times \,w[/tex] is [tex](0,2,6)[/tex].
We kindly invite to check this question on cross product: https://brainly.com/question/16537974