1. Does the function have a minimum or maximum value?
2.What is the function's min/max value?
3. Where does the minimum or maximum value occur?
x=

1 Does the function have a minimum or maximum value 2What is the functions minmax value 3 Where does the minimum or maximum value occur x class=

Respuesta :

Given the function [tex] g(x)=2x^2+12x+21 [/tex]. The above function can be written as

[tex] g(x)=2x^2+12x+21 \\
g(x)=2(x^2+6x)+21 \\
g(x)=2(x^2+6x+9-9)+21 \\
g(x)=2(x^2+6x+9)-18+21 \\
g(x)=2(x+3)^2+3 [/tex]

a)Now, the function [tex] g(x)=2(x+3)^2+3 [/tex] has minimum value since the coefficient of [tex] (x+3)^2 [/tex] is [tex] 2>0 [/tex].

b) The minimum value of the function occurs at [tex] x=-3 [/tex] and its value is

[tex] g(-3)=3(-3+3)^2+3 =3 [/tex]

c)The minimum value of the function occurs at [tex] x=-3 [/tex].