Respuesta :

(x+2)(x+8) = x^2 +10x +16

(x^2 + 10x + 16)(x-1) = x^3+9x^2+6x-16, so the other dimension is x-1

The given box has the following properties

The length is [tex] x+2 [/tex]

The height is [tex] x+8 [/tex]

The volume is [tex] x^3+9x^2+6x-16 [/tex]

As expression for volume can be setup as below , suppose width is w

[tex] x^3+9x^2+6x-16=(x+8)(x+2)w\\
\text{Make factors on the left side we get}\\
\\
x^3+8x^2+x^2+8x-2x-16=(x+8)(x+2)w\\
\\
x^2(x+8)+x(x+8)-2(x+8)=(x+8)(x+2)w\\
\\
(x+8)(x^2+x-2)=(x+8)(x+2)w\\
\\
(x+8)(x^2+2x-x-2)=(x+8)(x+2)w\\
\\
(x+8)(x(x+2)-1(x+2))=(x+8)(x+2)w\\
\\
(x+8)(x+2)(x-1)=(x+8)(x+2)w\\
[/tex]

Hence width w=(x-1)