Respuesta :
The volume of air surrounding the cone and inside the cylinder will be the difference of the volume of cylinder and the cone.
So,
Volume of air = Volume of cylinder - Volume of cone
[tex]= \pi r^{2}h- \frac{1}{3} \pi r^{2}h \\ \\ =3.14(5)^{2}(16)- \frac{1}{3}(3.14) (4)^{2}(12) \\ \\ =1055.04[/tex]
Thus, the volume of the air surrounding the cone and inside the cylinder will be 1055.04 cubic centimeter
So,
Volume of air = Volume of cylinder - Volume of cone
[tex]= \pi r^{2}h- \frac{1}{3} \pi r^{2}h \\ \\ =3.14(5)^{2}(16)- \frac{1}{3}(3.14) (4)^{2}(12) \\ \\ =1055.04[/tex]
Thus, the volume of the air surrounding the cone and inside the cylinder will be 1055.04 cubic centimeter
volume of air = volume of cylinder - volume of cone
cylinder = pi * r * r * h
cone = pi * r * r * h/3
substitute the values;
The volume of air is equal to 1055.05cu.cm
cylinder = pi * r * r * h
cone = pi * r * r * h/3
substitute the values;
The volume of air is equal to 1055.05cu.cm