Respuesta :

check the picture below.

notice, the base of the "square" pyramid, is a square, and it has 4 triangular faces with a base of 2, and a height of √(10).

so the total surface area is the area of the base plus all 4 triangular faces' areas.

[tex]\bf \stackrel{\textit{squarish base}}{(2\cdot 2)}~~~~+~~~~\stackrel{\textit{4 triangular faces}}{4\left[ \cfrac{1}{2}(2)(\sqrt{10}) \right]}[/tex]
Ver imagen jdoe0001

Answer:

Area of the regular pyramid = 16.64 square units.

Step-by-step explanation:

Given  : Regular pyramid .

To find: Find the total area of the regular pyramid.

Solution : We have  given that regular pyramid.

Area = 4 ( area of triangle ) + area of base .

Area of the regular pyramid = 4 ( [tex]\frac{1}{2} * base * height + side * side[/tex].

Area of the regular pyramid =  [tex]4(\frac{1}{2}* 2* \sqrt{10}  + 2*2[/tex]

Area of the regular pyramid =   [tex]4( \sqrt{10} ) + 4[/tex]

Area of the regular pyramid =  (4 [tex]( \sqrt{10} ) \+\ 1[/tex].

Area of the regular pyramid = 16.64 square units.

Therefore, Area of the regular pyramid = 16.64 square units.