Respuesta :
Think of this as "the angle whose sine is sqrt(3) over 2. That would be 60 degrees, or pi/3 radians. Check this by finding sin 60 degrees; the result will be sqrt(3) / 2.
Answer:
[tex]\frac{\pi }{3}[/tex]
Step-by-step explanation:
[tex]sin^{-1}(\frac{\sqrt{3} }{2})[/tex]
In, 30-60-90 degree triangle ,
the sides are in the ratio [tex]1: \sqrt{3} :2[/tex]
[tex]sin(60)= \frac{opposite}{hypotenuse}[/tex]
for 60 degree, opposite side = square root (3)
hypotenuse = 2
So [tex]sin(60)= \frac{\sqrt{3}}{2}[/tex]
when we move sin to the other side then it becomes sin^-1
[tex]60= sin^{-1}\frac{\sqrt{3}}{2}[/tex]
angle 60 degree is [tex]\frac{\pi }{3}[/tex]
[tex]sin^{-1}(\frac{\sqrt{3} }{2})=\frac{\pi }{3}[/tex]