Respuesta :
The function that describes the difference in the number of bacteria, N (t), of both species after t hours is the subtraction of the function A (t) = 5 + (0.25 t) 3 minus the function B (t) = 2 + 8 (1.06) t.
Then the function N (t) is represented by:
N (t) = A (t) - B (t)
N (t) = 3 + (0.25t) 3 - 8 (1.06) t
Then the function N (t) is represented by:
N (t) = A (t) - B (t)
N (t) = 3 + (0.25t) 3 - 8 (1.06) t
Answer:
The function N(t) is given as:
[tex]N(t)=3+(0.25t)^3-8(1.06)^t[/tex]
Step-by-step explanation:
Jenny studied the characteristics of two species of bacteria.
The number of bacteria of species A, A(t), after t hours is represented by the function:
[tex]A(t) = 5+(0.25t)^3[/tex]
The number of bacteria of species B, B(t), after t hours is represented by the function:
[tex]B(t) = 2 + 8(1.06)^t[/tex]
N(t) denotes the difference in the number of bacteria; hence N(t) is given by after t hours as:
N(t)=A(t)-B(t)
[tex]N(t)= 5+(0.25t)^3-(2 + 8(1.06)^t)[/tex]
which on simplifying gives:
[tex]N(t)=5+(0.25t)^3-2-8(1.06)^t\\\\N(t)=5-2+(0.25t)^3-8(1.06)^t\\\\N(t)=3+(0.25t)^3-8(1.06)^t[/tex]
Hence,