Respuesta :
Answer:
log₂([tex] \frac{x^2(x+4)}{3} [/tex])
Explanation:
Before we begin, remember the following:
logₐ(x) - logₐ(y) = logₐ([tex] \frac{x}{y} [/tex])
alog(x) = log(xᵃ)
Now, for the given we have:
3 log₂(x) - (log₂3 - log₂(x+4))
log₂(x²) - log₂([tex] \frac{3}{x+4} [/tex])
log₂([tex] \frac{x^2}{ \frac{3}{x+4} } [/tex]) = log₂([tex] \frac{x^2(x+4)}{3} [/tex])
Hope this helps :)
log₂([tex] \frac{x^2(x+4)}{3} [/tex])
Explanation:
Before we begin, remember the following:
logₐ(x) - logₐ(y) = logₐ([tex] \frac{x}{y} [/tex])
alog(x) = log(xᵃ)
Now, for the given we have:
3 log₂(x) - (log₂3 - log₂(x+4))
log₂(x²) - log₂([tex] \frac{3}{x+4} [/tex])
log₂([tex] \frac{x^2}{ \frac{3}{x+4} } [/tex]) = log₂([tex] \frac{x^2(x+4)}{3} [/tex])
Hope this helps :)
Answer:
the answer is c on edge
Step-by-step explanation:
it's the closest one so
log2 (x^3/3)/x+4
which is c