Step-by-step explanation:
Here, we need to simplify the following expression :
[tex]\dfrac{(1-cos\theta)(1+cos\theta)}{(1-sin\theta)(1+sin\theta)}[/tex]
Using the identity as :
[tex](a-b)(a+b)=a^2-b^2[/tex]
[tex]\frac{1-cos^2\theta}{1+sin^2\theta}[/tex]
Since, [tex]sin^2\theta+cos^2\theta=1[/tex]
= [tex]\dfrac{sin^2\theta}{cos^2\theta}[/tex]
Since, [tex]\dfrac{sin\theta}{cos\theta}=tan\theta[/tex]
So, [tex]\dfrac{(1-cos\theta)(1+cos\theta)}{(1-sin\theta)(1+sin\theta)}=tan^2\theta[/tex]
So, the correct option is (c). Hence, this is the required solution.