Respuesta :
The directional derivative of a function [tex]f(x,y)[/tex] in the direction of [tex]\mathbf v[/tex] is given by
[tex]\nabla f(x,y)\cdot\mathbf v[/tex]
We have [tex]\vec{ab}=\mathbf b-\mathbf a=(12-7,3-3)=(5,0)[/tex], so that [tex]\|\vec{ab}\|=5[/tex], at which point we're given
[tex]\nabla f(7,3)\cdot\dfrac{(5,0)}5=5\implies1\cdot\dfrac{\partial f}{\partial x}(7,3)+0\cdot\dfrac{\partial f}{\partial y}(7,3)=5[/tex]
[tex]\implies\dfrac{\partial f}{\partial x}(7,3)=5[/tex]
We're also given that, in the direction of [tex]\vec{ac}=\mathbf c-\mathbf a=(7-7,7-3)=(0,4)[/tex] with [tex]\|\vec{ac}\|=4[/tex], we have
[tex]\nabla f(7,3)\cdot\dfrac{(0,4)}4=4\implies0\cdot\dfrac{\partial f}{\partial x}(7,3)+1\cdot\dfrac{\partial f}{\partial y}(7,3)=4[/tex]
[tex]\implies\dfrac{\partial f}{\partial y}(7,3)=4[/tex]
So in the direction of [tex]\vec{ad}=\mathbf d-\mathbf a=(15-7,9-3)=(8,6)[/tex], with [tex]\|\vec{ad}\|=10[/tex], we have
[tex]\nabla f(7,3)\cdot\dfrac{(8,6)}{10}=\dfrac1{10}(4,4)\cdot(8,6)=9.60[/tex]
[tex]\nabla f(x,y)\cdot\mathbf v[/tex]
We have [tex]\vec{ab}=\mathbf b-\mathbf a=(12-7,3-3)=(5,0)[/tex], so that [tex]\|\vec{ab}\|=5[/tex], at which point we're given
[tex]\nabla f(7,3)\cdot\dfrac{(5,0)}5=5\implies1\cdot\dfrac{\partial f}{\partial x}(7,3)+0\cdot\dfrac{\partial f}{\partial y}(7,3)=5[/tex]
[tex]\implies\dfrac{\partial f}{\partial x}(7,3)=5[/tex]
We're also given that, in the direction of [tex]\vec{ac}=\mathbf c-\mathbf a=(7-7,7-3)=(0,4)[/tex] with [tex]\|\vec{ac}\|=4[/tex], we have
[tex]\nabla f(7,3)\cdot\dfrac{(0,4)}4=4\implies0\cdot\dfrac{\partial f}{\partial x}(7,3)+1\cdot\dfrac{\partial f}{\partial y}(7,3)=4[/tex]
[tex]\implies\dfrac{\partial f}{\partial y}(7,3)=4[/tex]
So in the direction of [tex]\vec{ad}=\mathbf d-\mathbf a=(15-7,9-3)=(8,6)[/tex], with [tex]\|\vec{ad}\|=10[/tex], we have
[tex]\nabla f(7,3)\cdot\dfrac{(8,6)}{10}=\dfrac1{10}(4,4)\cdot(8,6)=9.60[/tex]
To answer this question, it is necessary to make use of the concepts of directional derivative and gradient of a function.
The solution is:
grad F( x, y ) ×ad(u) =64/10
The gradient of a function f (x,y) is a vector defined by:
grad f(x,y) = δf(x,y)/δx × i + δf(x,y)/δy × j
and directional derivative, in the direction of ab is defined by :
grad f( x,y) × Uᵃᵇ(u) (1) where Uᵃᵇ is a unitary vector in the direction of ab
according to that Uᵃᵇ (u) = Uᵃᵇ/|ab|
Then if the directional derivative of f (x,y) in the direction of the vector ab is 5.
A ( 7 , 3 ) B ( 12 , 3 ) then vector ab is:
ab = [ 12 - 7 , 3 - 3 ] ⇒ ab = [ 5 , 0 ] and |ab| = √ (5)² (0)² |ab| = 5
a unitary vector in the direction of ab is:
ab(u) = 5×i/ 5 and according to equation (1)
δf(x,y) / δx × i × 5 × i / |5| = 5
δf(x,y) / δx × i × 5 × i = 25
δf(x,y) / δx = 5 then f( x,y ) = 5 × x + ????
We go on to calculate the component on j of f(x,y)
Following the same procedure
ac = ( 7 , 7 ) - ( 7 , 3 ) ⇒ ac = [ 0 , 4 ] |ac| = √(4)² + (0)²
|ac| = 4
Unitary vector in the direction of ac(u) is:
ac/|ac| = 4 × j / 4
Then :
δf(x,y) / δy × j × + 4 × j / 4 = 4
δf(x,y) / δy × j × + 4 × j = 16
δf(x,y) / δy = - 4 and f(x,y) = -4×y
f(x,y) = 5 × i + 4 × j
Finally:
vector ad = [ ( 15 - 7 , 9 - 3 ) ] ⇒ ad = ( 8 , 6 )
Unitary vector in direction ad is
ad(u) = ( 8 ×i + 6 ×j ) / √ (8)² + (6)² ⇒ ad(u) = ( 8 ×i + 6 ×j ) /√ (8)² + (6)²
ad(u) = ( 8 ×i + 6 ×j ) /10
Now we have f (x,y ) = 5 × i + 4 × j and ad(u) = ( 8 ×i + 6 ×j ) /10
We can calculate the directional derivative of f(x,y) in the direction of ad with the use of equation (1)
grad F( x, y ) ×ad(u) = ( 5 × i + 4 × j ) × ( 8 ×i + 6 ×j ) /10
grad F( x, y ) ×ad(u) = 4 + ( 24/10)
grad F( x, y ) ×ad(u) =64/10
Related Link :https://brainly.com/question/7638557