Respuesta :
The quadratic function is given by the equation
y=0.25(x-2)²-4, and the value of g is 6.
We first write this in vertex form, using the information we have:
y=a(x-h)²+k, where (h, k) is the vertex
y=a(x-2)²-4
We now substitute one of the points the function goes through into our x and y variables to solve for a:
0=a(-2-2)²-4
0=a(-4)²-4
0=16a-4
Add 4 to both sides:
0+4 = 16a-4+4
4=16a
Divide both sides by 16:
4/16 = 16a/16
0.25 = a
This gives us the function
y=0.25(x-2)²-4
Now we write this in standard form:
y=0.25(x-2)(x-2)-4
y=0.25(x*x-2*x-2*x-2(-2))-4
y=0.25(x²-2x-2x+4)-4
y=0.25(x²-4x+4)-4
y=0.25x²-1x+1-4
y=0.25x²-1x-3
Using the quadratic formula,
[tex]x=\frac{-(-1)\pm\sqrt{(-1)^2-4(0.25)(-3)}}{2(0.25)} \\ \\=\frac{1\pm \sqrt{1--3}}{0.5}=\frac{-1\pm \sqrt{4}}{0.5} \\ \\=\frac{1\pm2}{0.5}=\frac{1+2}{0.5}\text{ or }\frac{1-2}{0.5} \\ \\=\frac{3}{0.5}\text{ or }\frac{-1}{0.5}=6\text{ or }-2[/tex]
We already had the root (-2, 0); this gives us the value of g, 6.
y=0.25(x-2)²-4, and the value of g is 6.
We first write this in vertex form, using the information we have:
y=a(x-h)²+k, where (h, k) is the vertex
y=a(x-2)²-4
We now substitute one of the points the function goes through into our x and y variables to solve for a:
0=a(-2-2)²-4
0=a(-4)²-4
0=16a-4
Add 4 to both sides:
0+4 = 16a-4+4
4=16a
Divide both sides by 16:
4/16 = 16a/16
0.25 = a
This gives us the function
y=0.25(x-2)²-4
Now we write this in standard form:
y=0.25(x-2)(x-2)-4
y=0.25(x*x-2*x-2*x-2(-2))-4
y=0.25(x²-2x-2x+4)-4
y=0.25(x²-4x+4)-4
y=0.25x²-1x+1-4
y=0.25x²-1x-3
Using the quadratic formula,
[tex]x=\frac{-(-1)\pm\sqrt{(-1)^2-4(0.25)(-3)}}{2(0.25)} \\ \\=\frac{1\pm \sqrt{1--3}}{0.5}=\frac{-1\pm \sqrt{4}}{0.5} \\ \\=\frac{1\pm2}{0.5}=\frac{1+2}{0.5}\text{ or }\frac{1-2}{0.5} \\ \\=\frac{3}{0.5}\text{ or }\frac{-1}{0.5}=6\text{ or }-2[/tex]
We already had the root (-2, 0); this gives us the value of g, 6.
The value of [tex]\text{g}[/tex] is [tex]\boxed6[/tex] and the cut point is [tex]\boxed{\left( {6,0} \right)}[/tex].
Further Explanation:
A polynomial with degree [tex]2[/tex] is called as quadratic function.
The general quadratic function with vertex [tex]\left( {h,k} \right)[/tex] can be expressed as,
[tex]\boxed{y - k = a{{\left( {x - h} \right)}^2}}[/tex]
Given:
The vertex of the quadratic function is [tex]\left( {2, - 4} \right)[/tex].
The cut points on the [tex]x[/tex]-axis are [tex]\left( { - 2,0} \right)[/tex] and [tex]\left( {\text{g},0} \right)[/tex].
Calculation:
Substitute [tex]2[/tex] for [tex]h[/tex] and [tex]-4[/tex] for [tex]k[/tex] in general quadratic equation.
[tex]\begin{aligned}y - \left( { - 4} \right) &= a{\left( {x - 2} \right)^2} \\y + 4 &= a{\left( {x - 2} \right)^2} \\y &= a{\left( {x - 2} \right)^2} - 4 \\\end{aligned}[/tex]
The passing through point is [tex]\left( { - 2,0} \right)[/tex].
Substitute [tex]-2[/tex] for [tex]x[/tex] and [tex]0[/tex] for [tex]y[/tex] in equation [tex]y = a{\left( {x - 2} \right)^2} -4[/tex].
[tex]\begin{aligned}0&= a{\left( { - 2 - 2} \right)^2} - 4 \\4 &= 16a \\\frac{4}{{16}} &= a \\0.25 &= a \\\end{aligned}[/tex]
Now the quadratic function can be expressed as,
[tex]\boxed{y = 0.25{{\left( {x - 2} \right)}^2} - 4}[/tex]
The passing through point is [tex]\left( { - 2,0} \right)[/tex].
Substitute [tex]\text{g}[/tex] for [tex]x[/tex] and 0 for [tex]y[/tex] in equation [tex]y = 0.25{{\left( {x - 2} \right)}^2}-4[/tex].
[tex]\begin{aligned}0 &= 0.25{\left( {\text{g} - 2} \right)^2} - 4 \\4 &= 0.25{\left( {\text{g} - 2} \right)^2} \\\frac{4}{{0.25}} &= {\left( {\text{g} - 2} \right)^2} \\16 &= {\left( {\text{g} - 2} \right)^2} \\{\left( 4 \right)^2} &= {\left( {\text{g} - 2} \right)^2} \\\end{aligned}[/tex]
The value of [tex]\text{g-2}[/tex] is equal to [tex]4[/tex].
Then the value of [tex]\text{g}[/tex] can be obtained as,
[tex]\begin{aligned}\text{g}-2 &= 4 \\\text{g}&= 4 + 2\\&= 6 \\\end{aligned}[/tex]
The value of [tex]\text{g}[/tex] is [tex]\boxed6[/tex] and the cut point is [tex]\boxed{\left( {6,0} \right)}[/tex].
The quadratic function is [tex]\boxed{y = 0.25{{\left( {x - 2} \right)}^2} - 4}[/tex]
Learn more:
1. Learn more about unit conversion https://brainly.com/question/4837736
2. Learn more about non-collinear https://brainly.com/question/4165000
Answer details:
Grade: Middle School
Subject: Mathematics
Chapter: Quadratic Equations
Keywords: sum, positive number, quadratic equation, minus, difference, square root, number, value, vertex, cut of points, represents, standard quadratic equation.