Answer:
[tex]8x^4-44x^3+80x^2-50x[/tex]
Step-by-step explanation:
The given expression is
[tex](2x^2-5x)(4x^2-12x+10)[/tex]
Using distributive property we get
[tex]2x^2(4x^2-12x+10)-5x(4x^2-12x+10)[/tex]
[tex]2x^2(4x^2)+2x^2(-12x)+2x^2(10)-5x(4x^2)-5x(-12x)-5x(10)[/tex]
On simplification we get
[tex]8x^4-24x^3+20x^2-20x^3+60x^2-50x[/tex]
On combine like terms.
[tex]8x^4+(-24x^3-20x^3)+(20x^2+60x^2)-50x[/tex]
[tex]8x^4-44x^3+80x^2-50x[/tex]
Therefore the product of two polynomials is [tex]8x^4-44x^3+80x^2-50x[/tex].