Respuesta :

1)
[tex]6 { x}^{3} - 10 {x}^{2} + 4x[/tex]
Degree: 3
Terms:3

2)
[tex] - {x}^{5} - 3 {x}^{4} + 12 {x}^{3} - 6[/tex]
degree:5
terms:4

3) 9x^4-9
degree:4
terms:2

Degree and number of terms in each polynomial expression are as follow,

  • [tex]6x^{3} -10x^{2} +4x[/tex]         degree : [tex]3[/tex] and Number of terms : [tex]3[/tex]
  • [tex]-x^{5} -3x^{4} +12x^{3} -6[/tex] degree : [tex]5[/tex] and Number of terms : [tex]4[/tex]
  • [tex]9x^{4} -9[/tex]                       degree : [tex]4[/tex] and Number of terms : [tex]2[/tex]

What is expression?

" Expression is defined as the relation between two or more variables or numbers are represented using mathematical operation."

According to the question,

Given polynomial expression,

  1. [tex]4x + 2x^{2} ( 3x-5)[/tex]  

Simplify the given expression we get,

[tex]4x + 6x^{3} -10x^{2}\\\\= 6x^{3} -10x^{2} +4x[/tex]

Degree of the polynomial expression : [tex]3[/tex]

Number of terms : [tex]3[/tex]

2. [tex](-3x^{4} +5x^{3} -12) + (7x^{3} -x^{5} +6)[/tex]

Simplify the given expression we get,

[tex]-3x^{4} +12x^{3} -6 -x^{5} \\\\= -x^{5} -3x^{4} +12x^{3} -6[/tex]

Degree of the polynomial expression : [tex]5[/tex]

Number of terms : [tex]4[/tex]

3. [tex](3x^{2} -3)(3x^{2} +3)[/tex]

Simplify the given expression we get,

[tex]9x^{4} -9[/tex]

Degree of the polynomial expression : [tex]4[/tex]

Number of terms : [tex]2[/tex]

Hence, degree and number of terms in each polynomial expression are as follow,

  • [tex]6x^{3} -10x^{2} +4x[/tex]         degree : [tex]3[/tex] and Number of terms : [tex]3[/tex]
  • [tex]-x^{5} -3x^{4} +12x^{3} -6[/tex] degree : [tex]5[/tex] and Number of terms : [tex]4[/tex]
  • [tex]9x^{4} -9[/tex]                       degree : [tex]4[/tex] and Number of terms : [tex]2[/tex]

Learn more about expression here

brainly.com/question/14083225

#SPJ2