Respuesta :

The first step for solving this problem is to reduce the fraction with [tex] q^{-6} [/tex].
[tex] \frac{15p^{-4} }{-20^{12} q^{3} } [/tex]
Determine the sign of the fraction.
[tex] -\frac{15p^{-4} }{20^{12} q^{3} } [/tex]
Now if a negative exponent is in the numerator,, then you must move the expression to the denominator and then make the exponent positive. This will change the expression to the following:
[tex]- \frac{15}{ 20^{12} q^{3} p^{4} } [/tex]
Lastly,, use the commutative property to reorder the terms on the bottom of the fraction.
[tex]- \frac{15}{ 20^{12} p^{4} q^{3} } [/tex]
Since we cannot simplify this expression any further,, the correct answer to this question is [tex]- \frac{15}{ 20^{12} p^{4} q^{3} } [/tex].
Let me know if you have any further questions.
:)