n is a positive integer, and k is the product of all integers from 1 to n inclusive. If k is a multiple of 1440, then the smallest possible value of n is

Respuesta :

[tex]k=n!=1\cdot2\cdot\cdots\cdot(n-1)\cdot n[/tex]

Prime factorization of 1440:

[tex]1440=2^5\cdot3^2\cdot5[/tex]

The smallest *distinct* integer factors of 1440 can be pulled from the prime factorization:

[tex]1440=\dfrac{2\cdot3\cdot\overbrace{(2\cdot2)}^4\cdot5\cdot\overbrace{(2\cdot3)}^6\cdot7\cdot\overbrace{(2\cdot4)}^8}{7\cdot4}=\dfrac{8!}{28}[/tex]

We're told that [tex]k=1440m[/tex] for some integer [tex]m[/tex]. So

[tex]k=n!=1440m\iff1440=\dfrac{n!}m[/tex]

which suggests that [tex]n=8[/tex].