Respuesta :
1. 10x-44/x(squared)-8x+15
2. X+22/x(squared) -x-6
3.3x-33/x(squared)+5x-14
2. X+22/x(squared) -x-6
3.3x-33/x(squared)+5x-14
Answer and Explanation :
We have simplify the expressions into one fraction :
1) Expression [tex]\frac{7}{x-3}+ \frac{3}{x-5}[/tex]
Taking LCM in the denominator,
[tex]=\frac{7(x-5)+3(x-3)}{(x-3)(x-5)}[/tex]
[tex]=\frac{7x-35+3x-9}{x^2-5x-3x+15}[/tex]
[tex]=\frac{10x-44}{x^2-8x+15}[/tex]
The required form is [tex]\frac{7}{x-3}+ \frac{3}{x-5}=\frac{10x-44}{x^2-8x+15}[/tex]
2) Expression [tex]\frac{-5}{x-3}-(-4\cdot(x+2))[/tex]
Taking LCM in the denominator,
[tex]\frac{-5}{x-3}+(4x+8)[/tex]
[tex]=\frac{-5+(4x+8)(x-3))}{x-3}[/tex]
[tex]=\frac{-5+4x^2-12x+8x-24}{x-3}[/tex]
[tex]=\frac{4x^2-4x-29}{x-3}[/tex]
The required form is [tex]\frac{-5}{x-3}-(-4\cdot(x+2))=\frac{4x^2-4x-29}{x-3}[/tex]
3) Expression [tex]\frac{6}{x+7}- \frac{3}{x-2}[/tex]
Taking LCM in the denominator,
[tex]=\frac{6(x-2)-3(x+7)}{(x+7)(x-2)}[/tex]
[tex]=\frac{6x-12-3x-21}{x^2-2x+7x-14}[/tex]
[tex]=\frac{3x-33}{x^2+6x-14}[/tex]
The required form is [tex]\frac{6}{x+7}- \frac{3}{x-2}=\frac{3x-33}{x^2+6x-14}[/tex]