Respuesta :
By applying the law of sines.
[tex] \frac{GH}{sin \ J} = \frac{GJ}{sin \ H} [/tex]
Given:
GJ = 10 , ∠J =45° , ∠H = 31°
∴ [tex] \frac{GH}{sin \ 45} = \frac{10}{sin \ 31} [/tex]
∴ GH = 10 * sin 45° / sin 31° ≈ 13.7 m
[tex] \frac{GH}{sin \ J} = \frac{GJ}{sin \ H} [/tex]
Given:
GJ = 10 , ∠J =45° , ∠H = 31°
∴ [tex] \frac{GH}{sin \ 45} = \frac{10}{sin \ 31} [/tex]
∴ GH = 10 * sin 45° / sin 31° ≈ 13.7 m