Respuesta :
Looks like
[tex]y(x)=\displaystyle\int_5^{4-3x}u^3(1+u^2)\,\mathrm du[/tex]
in which case the FTC asserts that
[tex]\dfrac{\mathrm dy}{\mathrm dx}=(4-3x)^3(1+(4-3x)^2)\cdot\dfrac{\mathrm d(4-3x)}{\mathrm dx}[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dx}=-3(4-3x)^3(1+(4-3x)^2)[/tex]
[tex]y(x)=\displaystyle\int_5^{4-3x}u^3(1+u^2)\,\mathrm du[/tex]
in which case the FTC asserts that
[tex]\dfrac{\mathrm dy}{\mathrm dx}=(4-3x)^3(1+(4-3x)^2)\cdot\dfrac{\mathrm d(4-3x)}{\mathrm dx}[/tex]
[tex]\dfrac{\mathrm dy}{\mathrm dx}=-3(4-3x)^3(1+(4-3x)^2)[/tex]
Using part 1 of the fundamental theorem of calculus to find the derivative of the function. The derivative of the given function is:
[tex]\mathbf{\dfrac{dy}{dx} =3\Big (\dfrac{(4-3x)^3}{1+(4-3x)^2}\ \Big) \ }[/tex]
Consider the given function:
[tex]\mathbf{y = \int^5_{4-3x} \ \dfrac{u^3}{1+u^2}\ du}[/tex]
The objective is to find [tex]\mathbf{\dfrac{dy}{dx}}[/tex] by using the fundamental theorem of calculus.
- Suppose v = 4 - 3x;
- Then dv = -3dx
- [tex]\mathbf{\dfrac{dv}{dx}= -3}[/tex]
Using chain rule:
[tex]\mathbf{\dfrac{dy}{dx} = \dfrac{dy}{dv}\times \dfrac{dv}{dx}}[/tex]
[tex]\mathbf{ =\dfrac{d}{dv}\Big (\int^5_{4-3x} \dfrac{u^3}{1+u^2}\ du\Big) \dfrac{dv}{dx}}}[/tex]
[tex]\mathbf{ =\dfrac{d}{dv}\Big (\int^5_{v} \dfrac{u^3}{1+u^2}\ du\Big) \dfrac{dv}{dx} \ \ \ \ \ since \ v \ = 4 - 3x} }[/tex]
[tex]\mathbf{ =-\dfrac{d}{dv}\Big (\int^v_{5} \dfrac{u^3}{1+u^2}\ du\Big) \dfrac{dv}{dx} }[/tex]
[tex]\mathbf{ =-\dfrac{d}{dv}\Big (\int^v_{5} \dfrac{u^3}{1+u^2}\ du\Big) \ (-3)}[/tex]
[tex]\mathbf{ =3\dfrac{d}{dv}\Big (\int^v_{5} \dfrac{u^3}{1+u^2}\ du\Big) \ }[/tex]
From the fundamental theorem of calculus;
[tex]\mathbf{\dfrac{d}{dx} \Big( \int^x_1 \ g(t) dt \Big) = g(x)}[/tex]
∴
[tex]\mathbf{ =3\dfrac{d}{dv}\Big (\int^v_{5} \dfrac{u^3}{1+u^2}\ du\Big) \ }[/tex] will be:
[tex]\mathbf{ =3\times \Big (\dfrac{(4-3x)^3}{1+(4-3x)^2}\ \Big) \ }[/tex]
∴
[tex]\mathbf{\dfrac{dy}{dx} =3\Big (\dfrac{(4-3x)^3}{1+(4-3x)^2}\ \Big) \ }[/tex]
Therefore, we can conclude that the derivative of [tex]\mathbf{y = \int^5_{4-3x} \ \dfrac{u^3}{1+u^2}\ du}[/tex]
using the fundamental theorem of calculus is [tex]\mathbf{\dfrac{dy}{dx} =3\Big (\dfrac{(4-3x)^3}{1+(4-3x)^2}\ \Big) \ }[/tex]
Learn more about fundamental derivatives here:
https://brainly.com/question/9964510?referrer=searchResults