What are the angle measures of triangle ABC?

m∠A = 30°, m∠B = 60°, m∠C = 90°
m∠A = 90°, m∠B = 60°, m∠C = 30°
m∠A = 60°, m∠B = 90°, m∠C = 30°
m∠A = 90°, m∠B = 30°, m∠C = 60°

What are the angle measures of triangle ABC mA 30 mB 60 mC 90 mA 90 mB 60 mC 30 mA 60 mB 90 mC 30 mA 90 mB 30 mC 60 class=

Respuesta :

The correct option is:   m∠A = 90°, m∠B = 60°, m∠C = 30°

Explanation

Given sides of the triangle are....

Opposite side of ∠A is:  [tex]a= 24[/tex]

Opposite side of ∠B is:  [tex]b=12\sqrt{3}[/tex] and

Opposite side of ∠C is:  [tex]c=12[/tex]

For finding the angles of triangle ABC, we need to use the Cosine rules. So....

[tex]cos(A)= \frac{b^2+c^2-a^2}{2bc}\\ \\ cos(A)=\frac{(12\sqrt{3})^2+(12)^2-(24)^2}{2(12\sqrt{3})(12)} \\ \\ cos(A)=\frac{432+144-576}{288\sqrt{3}}=0\\ \\ A=cos^-^1(0)=90degree\\ \\ \\ cos(B)=\frac{a^2+c^2-b^2}{2ac}\\ \\ cos(B)=\frac{(24)^2+(12)^2-(12\sqrt{3})^2}{2(24)(12)}\\ \\ cos(B)=\frac{576+144-432}{576}=\frac{1}{2}\\ \\ B= cos^-^1(\frac{1}{2})=60 degree\\ \\ \\ cos(C)=\frac{a^2+b^2-c^2}{2ab}\\ \\ cos(C)=\frac{(24)^2+(12\sqrt{3})^2-(12)^2}{2(24)(12\sqrt{3})}[/tex]

[tex]cos(C)=\frac{576+432-144}{576\sqrt{3}}=\frac{3}{2\sqrt{3}}=\frac{\sqrt{3}}{2}\\ \\ C=cos^-^1(\frac{\sqrt{3}}{2})=30 degree[/tex]

So, the measures of ∠A, ∠B and ∠C are  90°, 60° and 30° respectively.


Answer:

m∠A = 90°, m∠B = 60°, m∠C = 30°

Step-by-step explanation:

edge2021