aabila
contestada

Consider the graphs f(x) = log10x and g(x) = a · log10x.
What happens to the graph of g(x) = a · log10x if a is –7? Check all that apply.
a.The graph is stretched vertically.
b.The graph will shift a units to the right.
c.The graph is compressed.
d.The graph is reflected across the x-axis.
e.The graph will shift a units to the left.

Respuesta :

zoexoe
The answers are a.The graph is stretched vertically and d.The graph is reflected across the x-axis.
Since the parent function f(x) = log10x is multiplied by a constant a that is equal to -7, the result is a graph for 
     g(x) = -7 log10x
This is a vertical stretch of the graph of f(x) because |a|>1.
And since a = -7 is less than zero, the graph for g(x) = -7 log10x is reflected across the x-axis.

Answer:

A,D on EDGE2020

Explanation: