Respuesta :

cotangent  = adjacent / opposite side

For < A its  24/10  = 2.4
For < B its  10/24  or  0.4167  to  4 dec places

Answer:

[tex]\text{cot}(A)=\frac{12}{5}[/tex]

[tex]\text{cot}(B)=\frac{5}{12}[/tex]

Step-by-step explanation:

We have been given a right triangle. We are asked to find the cotangent of both angle A and angle B.

We know that cotangent relates the adjacent of right triangle to opposite side of right triangle.

[tex]\text{cot}=\frac{\text{Adjacent}}{\text{Opposite}}[/tex]

[tex]\text{cot}(A)=\frac{24}{10}[/tex]

[tex]\text{cot}(A)=\frac{12}{5}[/tex]

Therefore, cotangent of angle A is [tex]\frac{12}{5}[/tex].

[tex]\text{cot}(B)=\frac{10}{24}[/tex]

[tex]\text{cot}(B)=\frac{5}{12}[/tex]

Therefore, cotangent of angle B is [tex]\frac{5}{12}[/tex].