Respuesta :
Answer:
Amplitude: 1; midline: y = 1
Step-by-step explanation:
From the graph we can conclude that it is a sine or cosine function. In their standard form, these functions are given by the following equations:
[tex]y(t)=Acos(\omega t +\phi)\\\\or\\\\y(t)=Asin(\omega t+ \phi)[/tex]
Where:
[tex]A=Amplitude=\frac{|A_m_i_n-A_m_a_x|}{2}\\\omega=Angular\hspace{3}frequency\\\phi=Initial \hspace{3}phase[/tex]
And:
[tex]A_m_a_x=Maximum\hspace{3}amplitude\\A_m_i_n=Minimum\hspace{3}amplitude[/tex]
On the other hand, we can define the midline of these kind of functions as the halfway between the maximum and minimum amplitude of the function, Therefore:
[tex]Midline=M_l=\frac{A_m_a_x+A_m_i_n}{2}[/tex]
From the graph you can see that the maximum value of the function(maximum amplitude) is 2 and the minimum value of the function (minimum amplitude) is 0, thus:
[tex]A=\frac{|A_m_i_n-A_m_a_x|}{2} =\frac{|0-2|}{2} =\frac{|-2|}{2} =\frac{2}{2} =1[/tex]
And:
[tex]M_l=\frac{A_m_a_x+A_m_i_n}{2}=\frac{2+0}{2} =\frac{2}{2} =1[/tex]