HELP
Given right triangle ABC.

In the given right triangle, find the length of the hypotenuse, AB, if BC = 6 and AC = 5.
A.5
B.√36
C.√61
D.√11

HELP Given right triangle ABC In the given right triangle find the length of the hypotenuse AB if BC 6 and AC 5 A5 B36 C61 D11 class=

Respuesta :

Use the Pythagorean Theorem:
 A²+B²=C²
 6²+5²=C²
36+25=C²
       61=C²
    √61=C
So the answer is C.

Answer:

Correct answer is option C (√61)

Step-by-step explanation:

in this question we have given a right triangle in which

∠C=[tex]90^{0}[/tex]

BC = 6 and AC = 5

we have to find the length of the hypotenuse, AB=?

To find the the hypotenuse we will apply Pythagoras theorem (According to Pythagoras theorem, "in a right angle triangle, square of hypotenuse is equal to the sum of square of other two sides")

In ΔABC by Pythagoras theorem

[tex]AB^{2}=AC^{2}+BC^{2}[/tex]...................(1)

put values of BC and AC in equation 1

[tex]AB^{2}=5^{2}+6^{2}[/tex]

[tex]AB^{2}=25+36[/tex]

[tex]AB^{2}=61[/tex]

AB=√61