Respuesta :
Answer:
The equation is [tex]y ^ 2 = \frac{x + 1}{2}[/tex]
Step-by-step explanation:
The parameter that we have is t. We want to eliminate this parameter in both equations, therefore in the first equation we solve for t and in the second equation we solve for the variable t.
We have:
[tex]x = 2t-1\\\\x + 1 = 2t\\\\t = \frac{x + 1}{2}[/tex]
Now we solve the other equation for t.
[tex]y= \sqrt{t}[/tex]
[tex]y ^ 2 = t[/tex] because [tex]t> 0[/tex]
As [tex]t = y ^ 2[/tex] and also [tex]t = \frac{x + 1}{2}[/tex]
Then:
[tex]y ^ 2 = \frac{x + 1}{2}[/tex]
The correct answer is:
D. [tex]x=2y^{2} -1, y\geq 0[/tex]